Document Type

Article

Publication Date

8-28-2025

Abstract

Accurate measurement of note-to-note transitions is essential for analyzing articulation in clarinet performance. Traditional methods rely on either subjective amplitude thresholds—such as the time between 5% and 95% RMS levels—or direct measurement of tongue-reed contact time using reed-mounted sensors. These approaches are limited by their dependence on user-defined parameters or invasive hardware. This study proposes a computational alternative: ΔT, a curvature-based metric defined as the time interval between surrounding minima in the second derivative of the mouthpiece pressure envelope. Using data from a sensor-equipped mouthpiece (SEM), we compare ΔT to both threshold-based timing (Tt) and tongue contact duration (Tc) across portato and staccato articulations. Our findings show that ΔT closely tracks both Tt and Tc in structured articulations, with minimal absolute difference and robust repeatability. These results support the use of ΔT as a non-invasive, objective, and reliable estimate of transition duration, enabling broader application in performance analysis, pedagogy, and real-time feedback systems. This research was funded by: National Science Foundation Grant 2109932.

Comments

Originally published in the Proceedings of Meetings on Acoustics.

Publication Title

Proceedings of Meetings on Acoustics

DOI

https://doi.org/10.1121/2.0002074

Available for download on Friday, August 28, 2026

Included in

Physics Commons

Share

COinS