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Abstract: This study offers a simple method to characterize two transi-
tion types in passages of music in order to automatically distinguish
slurred transitions from tongued transitions in musical settings. Data
were recorded from musicians playing a clarinet with a sensor-equipped
mouthpiece measuring blowing pressure in the mouth and pressure in
the mouthpiece. This method allows for comparing transitions in differ-
ent musical contexts, playing regimes, and between players. The method
is highly reliable in automatically detecting transition types in recorded
clarinet playing in both simple and more complex passages.
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1. Introduction and background

Musical transitions are note-to-note separations that can allow for identification and com-
parison of musical pieces, distinction between players, and classification of transitions—
all of which can inform methods for compression, delivery, indexing, and retrieval.1 In
the past, transitions have been studied by considering the concepts such as onset, attack,
or transient region as described by Bello et al.1 While many studies are interested in the
analysis of external sound pressure, this work focuses on a different method of transition
detection that utilizes the internal pressure signal, inside the clarinet mouthpiece, as is the
standard in clarinet acoustics research.2–5

As a way to better understand note-to-note transitions, musical acoustics
research over the past decade has focused on studying transients.2–6 The transient por-
tion of a musical tone is what aids in the recognition of instrument timbre.7 The length
of the initial transient of a particular instrument varies from musician to musician and
is dependent on musical context.3 Most research on clarinet transients has focused on
separated tones both with artificial playing machines4,5 and musician data.3,6 The
selections being performed are not generally excerpts of music. This means that, unfor-
tunately, most transient studies are being done in non-musical contexts resulting in
analysis and conclusions which lack applicability for musicians.

During performance, with written rests aside, the majority of musical tones in
a passage are connected in some way—slurred (connected) or articulated tones (with a
variety of methods for tongue or breath attacks as described by Li et al.3). The most
current methods used to analyze measured clarinet transients come from Bergeot
et al.4 and Li et al.3,6 Both of these studies used either an artificial mouth with a well-
regulated input pressure ramp, or a mouthpiece equipped with sensors to measure the
blowing pressure signals as well as the oscillating pressure inside the mouthpiece or
barrel when played. However, both studies focused on individual, isolated tones. To
study the transient portion of a pressure signal, Bergeot et al. analyzed the difference
between specific peaks and valleys of the second time derivative of the root-mean-
square (RMS) mouthpiece pressure (€PRMS) to signify the beginning of the transient.
However, this method still incorporated some means of manual delimitation to mark
the beginning and end of a transient. Other authors analyze the difference in time
between 10% and 90% of the steady state pressure, and sometimes 20% and 80%, or
they rely on the portion of the initial signal that is increasing exponentially until satu-
ration.6 With these techniques there is still a high degree of manual delimitation in
marking the start and stop times of this transient portion. While the transient of a
note is of interest to musical acousticians, for signals where there is not a decrease of
blowing pressure back to zero, during a slurred transition, for example, the transient is
not well defined. On the other hand, the portion of the signal between notes, called
throughout this paper the transition, varies between players and articulation styles and
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is of great interest. The transient and transition are related, but very different. This
manuscript will focus on the transitions from note-to-note in clarinet playing based on
two general articulation types. To the authors’ knowledge, this is the first study on
note-to-note transitions in a selection of music.

The current work provides a method for automatic detection of musician
articulation as an objective means to mark transition beginnings and ends. After visual
inspection of players’ mouthpiece pressure signals, the beginning and ends of transi-
tions were not visibly different enough for successful automatic detection of transition
type. However, while comparing to transient detection methods and calculating the
shape of the second derivative of the RMS mouthpiece pressure as described by
Bergeot et al.,4 the shape of this curve was noticeably different between articulation
types such as tongued notes and slurred notes. Using this mathematical tool as an
analysis technique succeeds in revealing these otherwise subtle features in the pressure
signals. The resulting characteristic shape of the second derivative can be analyzed by
an algorithm which searches for thresholds of signal peaks compared to surrounding
peaks and can therefore determine the articulation type automatically. This detection
algorithm is suitable for passages of music for which the articulation is known but also
where it was perhaps unclear—such as a long passage of music with many varying
transition types. While this method is not suitable to detect or measure the onset, nor
transient portion (as defined in literature), it succeeds in providing an objective means
of marking the beginning and end of a transition between notes.

Section 2 will describe the procedure for tests performed in this study and
detail the analysis technique and algorithm used to differentiate between two articula-
tion styles. Section 3 will then detail the results of the tests after algorithm application.
Finally, we offer an example of automatic detection applied to a performance of a por-
tion of the Mozart clarinet concerto by various players of different ability levels.

2. Experimental methodology

To measure playing parameters, a sensor-equipped mouthpiece (SEM) similar to that
used by Li et al.3,6 for the clarinet and Munoz et al.8 for the saxophone was used. The
SEM was built using a Vandoren M30 mouthpiece and played on a Buffet (Mantes-la-
Ville, France) R13 Festival B[ soprano clarinet for each of the tests. All signals were
read to the computer via an acquisition box (NI-6212, Austin, TX) at a sampling fre-
quency of 40 kHz. A Vandoren reed (strength 1.5) was used and a Vandoren (Paris,
France) M30 mouthpiece was fitted with two Honeywell (Charlotte, NC) SCX05DNC
microstructure pressure sensors that were connected with small tubes to the mouthpiece
measuring Pb (blowing pressure) and Pmp (pressure inside of the mouthpiece). Given that
a softer reed was used, the blowing pressures and thresholds of oscillation reported
throughout this study will be lower than reported in other literature.

Six musicians participated in this series of measurements and were allowed a 5
min training period with the SEM before tests began. The musicians ranged in experi-
ence from novice (with 10 years of sporadic playing and no formal training) to profes-
sional (a university clarinet professor). The musicians were placed in order of their
self-reported experience level and will be referred to as musicians A–F, with musician
A having the most experience. There is a large gap in performance ability between
players A thru F; however, all tasks were performed by all six musicians as requested.

In this set of tests, five full measurements sets were taken with eight individual
iterations of each. A summary of these tests can be found in Table 1. Test 1 required the
musician to play concert D3 to B[3 chromatically, about 1 s per note at an mf dynamic,
with the notes slurred from one to the next. Test 2 involved the same instructions and
content but the notes were tongued. In Test 3, the musician would play the same finger-
ings and articulation style as in Test 1 but in the second register (same fingerings, apply
the register key). Test 4 then required the musician to play the same fingerings and

Table 1. Playing tests performed by musician. Test number, description of tests, and articulation type detailed.
All note names refer to concert pitch.

Test Number Description Articulation Type

1 Low 1st register: D3 - B[3 chromatic (9 notes) Slur
2 Low 1st register: D3 - B[3 chromatic (9 notes) Tongue
3 Low 2nd register: A4 - F5 chromatic (9 notes) Slur
4 Low 2nd register: A4 - F5 chromatic (9 notes) Tongue
5 Mozart Adagio Selection As written
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articulation style as in Test 2 but in the second register (same fingerings, apply the register
key). Test 5 completed the series and required the musician to play a well-known, short
passage of the Mozart clarinet concerto that included several tongued and slurred transi-
tions, and was transcribed in both the first and second registers of the clarinet.

Figure 1 contains plots of typical data from this study, the transition between
concert E3 and F3 played (from Tests 1 and 2). The left column contains three plots,
all analysis from a slurred transition (Test 1) and the right column contains three plots,
all analysis from a tongued transition (Test 2). The top row, for each transition type,
shows three signals: (1) the blowing pressure, Pb (dashed black line), the mouthpiece
pressure, Pmp (dotted black line), and the RMS pressure, PRMS (thick gray line). The
middle row of Fig. 1 shows plots of PRMS (thick gray line) which is the same as in the
top row, and _PRMS (thin black line), the first derivative of the RMS pressure signal.
Finally, the bottom row shows PRMS (thick gray line) again, and €PRMS (black line),
the second derivative of the RMS pressure signal. The first local maximum of €PRMS is
marked with a vertical dashed-dotted black line for both Tests 1 and 2 (in the bottom
row). The values on the y axis refer to the PRMS curve only.

Throughout this study, the shape of the €PRMS curve was used to classify the
transitions as slurred or tongued. While all transitions exhibit a drop in an otherwise sta-
ble PRMS, in the case of a slurred transition this drop is short in duration and of small
amplitude before the rise back to a stable pressure for the next note. The mechanism of
tonguing causes a sharp drop followed by a fairly stable, nearly-zero RMS pressure for a
significant time interval before the reemergence of sound. These three separate stages,
characteristic of a tongued transition, are reliably identified by finding two successive and
distinct positive extrema in €PRMS, a few milliseconds apart, which reflect the curvature
change at the near extinction and re-emergence of the sound. A count of the maxima
found in €PRMS during a transition was used as a way to classify it as slurred or tongued
since the trend of one maximum for a slurred transition and two maxima for a tongued
transition was present in nearly all cases (further discussed in Sec. 3).

With this in mind, the automatic detection algorithm, written in MATLAB,
begins by searching €PRMS for all potential transitions, and then classifies each as a
tongue, slur, or not a transition according to the number of maxima detected. In order
for a segment to be classified first as a potential transition, a local maximum of €PRMS
must be larger than a particular threshold (somewhat arbitrary but specific for each
measurement), for example, 12% of PRMS of the smaller amplitude of the two sur-
rounding notes. The idea behind this threshold value is that it will not be constant for
the whole measurement as the extent to which the pressure will drop during the transi-
tion will vary from one note to the next and from player to player. The choice of
threshold at 12% will be discussed in Sec. 3.

For potential transitions, shown in Fig. 1 (bottom row, vertical lines), the imme-
diate area surrounding the peak was analyzed (for time values 60.25 s). If the shape of
the €PRMS that surrounded this peak was determined to be bimodal (two local maxima),
the potential transition was classified as a tongued transition (Fig. 1, bottom row, right).
If the shape was determined to be unimodal (one local maximum), the potential

Fig. 1. Typical data from study. From Tests 1 (slurred) and 2 (tongued), the transition between concert E3 and
F3: Left column is slurred, right column is tongued. Top row: Pb (dashed black line), Pmp (dotted black line),
and PRMS (thick gray line). Middle row: PRMS (thick gray line), _PRMS (thin black line). Bottom row: PRMS

(thick gray line), €PRMS (black line), the first maximum of €PRMS is marked with a vertical dashed-dotted black
line for both Tests 1 and 2 (in the bottom row). The values on the y axis refer to the PRMS curve only.
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transition was classified as a slurred transition (Fig. 1, bottom row, left). If the potential
transition did not match any of these cases, it was classified as not a transition.

3. Experimental results

The main outcome from this study is the new automatic classification method for
note-to-note transitions based on the signature shape of the second derivative of the
internal mouthpiece RMS pressure signal (€PRMS). For all tests where the musician was
instructed to play either slurred or tongued, however, an exact method for tonguing
was not specified and the six players incorporated a variety of techniques.

3.1 Results from tests 1–4

The algorithm detected the majority of slurred and tongued transitions as confirmed by
visual and aural inspection. The visual difference, even in the raw internal pressure, was
obvious between the two transition types and therefore for the simple passages, accurate
manual classification could be achieved. For the suite of measurements included in Tests
1–4 there were an expected 640 possible slurred transitions and 640 tongued transitions.
After the algorithm was applied, the number of automatically detected slurred and
tongued transitions were noted and compared to the expected number. However, as there
were often discrepancies in playing technique from player to player, the algorithm would
also register false positives, false negatives, or misclassifications. All of these classifications
are detailed in Table 2. A false positive is when the algorithm detected a transition where
there was no transition. A false negative is when the algorithm detected no transition
where there is in fact a transition. And a misclassification is simply where the algorithm
correctly detected there is a transition but incorrectly classified it as a different type of
transition. The number of correct classifications, misclassifications, and false negatives
should sum to the total number of expected transitions. With a threshold percentage set
to 12%, the algorithm was able to detect 625 of 640 slurred transitions and 450 out of
640 tongued transitions for 97% and 70% accuracy, respectively, as presented in Table 2.

The choice of a 12% threshold was made after a study of this parameter’s
effect was complete. As described in Sec. 2, in order to be classified as a transition, the
first, second-derivative peak must be larger than a given threshold, for example, 12%
of the RMS pressure envelope of the preceding note. Figure 2 shows the percentages

Table 2. Algorithm performance for all player data, Tests 1–4. Slur performance on the left and tongue perfor-
mance on the right.

Found Expected Found Expected

Slur 625 640 Tongue 450 640
False Positive Slur 6 0 False Positive Slur 17 0
False Positive Tongue 3 0 False Positive Tongue 5 0
False Negative Slur 12 0 False Negative Tongue 15 0
Misclassification 3 0 Misclassification 175 0
% Correct 97.65% % Correct 70.31%

Fig. 2. (Color online) Algorithm performance based on threshold value. A 12% threshold represented the high-
est level of identification of articulation type based on experimental protocol. The black lines (left axes labels)
are for slurred transitions and the dashed lines (right axes labels) are for tongued transitions.
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of correct classifications (tongue and slurs) by the algorithm given different threshold
percentages. The value chosen (12%) represented the best case for each transition type,
for this set of data. Given other players, or other playing tasks, this value could likely
change and should be monitored.

Another difficulty in classifying the tongued transitions was that musicians
used a variety of tonguing techniques. By aural inspection of the measurements, a few
players did not in fact tongue all transitions when instructed to do so (either by accident
or by misunderstanding the task). When running the analysis without including players
C, D, and F the percentage of correct tongue classifications increased from around 70%
to nearly 90% and the misclassifications decreased from 27% to 9%. As the algorithm
was meant to classify tongued signals (for Tests 2 and 4), not including the data from
these players in the final performance analysis of the algorithm is justified. The correct
classification percentage for slurred transitions is always greater than for tongued transi-
tions. This is also due to the difference in tonguing style and duration throughout the
tests. Plans for future studies include varying tempos and tonguing style to test the clas-
sification ability in these different situations, like those described by P�amies-Vil�a et al.2

3.2 Results from test 5

The next result of this study was the application of this algorithm to detect transition
types in a more difficult classification test–a passage of music. The musicians con-
cluded the measurement sessions by playing a short, well known passage from the
Mozart clarinet concerto in order to measure transition signatures in a more musical
context (Fig. 3). The method and metric were successful for this passage as well, show-
ing the second derivative curve following the patterns outlined in Fig. 1 where the
musicians first played the top line (second register), then the bottom line (first register)
with the articulations shown, mf dynamic level at an adagio tempo. Shown in Fig. 4 is
a small portion of the algorithm output from the nearly 60 s full measurement signal—
the PRMS signal and €PRMS. The dotted black vertical line indicates a slurred transition
and a dashed black vertical line indicates a tongued transition.

To determine the algorithm’s accuracy, the transition types in this file were
determined based on the shape of €PRMS at the transition and compared to the expected
transitions as depicted in the passage of music with the majority of the transitions

Fig. 3. Passage of Mozart clarinet concerto played by musicians. The top line would be played first to represent
the second register and the bottom line would be played directly after the measurement to represent the first
register.

Fig. 4. Analysis of a portion of the Mozart clarinet concerto selection. Dark gray line—PRMS, thin black line—
€PRMS, black vertical dashed—a tongued transition, black dotted vertical line—a slurred transition. All transi-
tions here were automatically detected given the criteria detailed in Sec. 2. The coordinates on the y axis refer to
the PRMS curve only.
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being tongued transitions. Then, as before, the number of correct classifications and
false or misclassifications were noted. Table 3 shows the correct classifications and false
negatives for three different configurations of players for slurred transitions and
tongued transitions. For each section of the table, the column represents the player
configuration: Left—all players, middle—player D removed from analysis, Right—
players D and F removed from the analysis. The rows in Table 3 offer the percentage
correct classifications for each type and the false negatives detected. By listening to the
audio signal (and live tests) it was not clear that players D and F were correctly per-
forming the articulations as requested. The choice of removing players from the analy-
sis serves to show that the algorithm performance in classifying the tongued transitions
drastically increases (row three of Table 3) when these players are not included in anal-
ysis (from 64% to 80% correct), yet the slurred classifications (row one of Table 3)
were stable whatever the combination of players. This is likely due to the fact that
there are a variety of tonguing methods employed by players and the current analysis
does not make a clear distinction in tonguing type. Nevertheless, for more experienced
players, the far right column of Table 3 represents the best case detection scenario for
this data set, a correct classification of 80% of the tongued transitions and 90% of the
slurred transitions in the Mozart excerpt.

4. Conclusion

This paper presented a computational method for detecting slurred and tongued note-
to-note transitions in clarinet playing. Authors of past studies focusing on transients
mention the lack of musical context in their research, choosing to study single, isolated
notes. How this method can be expanded to pinpoint the exact start and stop of a tran-
sient is left for future work. However, the results of this work confirm that the method
is a reliable way to determine the types of transitions and when they occur. An exten-
sion of the method could be to then determine the transition time between two notes,
allowing for comparisons of various note fingerings in chromatic passages—perhaps
seeking the smallest transition time. Finally, especially for more experienced players, it
will also allow for further comparison of clarinetists, instruments, or instrument accesso-
ries as a measure of quality for listeners, manufacturers, and musicians alike.
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