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Studies have been made of the normal modes of a 20.7 cm diameter steel gamelan gong. A finite-

element model has been constructed and its predictions for normal modes compared with experi-

mental results obtained using electronic speckle pattern interferometry. Agreement was reasonable

in view of the lack of precision in the manufacture of the instrument. The results agree with expect-

ations for an axially symmetric system subject to small symmetry breaking. The extent to which

the results obey Chladni’s law is discussed. Comparison with vibrational and acoustical spectra

enabled the identification of the small number of modes responsible for the sound output when

played normally. Evidence of non-linear behavior was found, mainly in the form of subharmonics

of true modes. Experiments using scanning laser Doppler vibrometry gave satisfactory agreement

with the other methods. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4895683]

PACS number(s): 43.75.Kk, 43.40.At, 43.40.Le [KML] Pages: 1942–1950

I. INTRODUCTION

A gamelan is defined as an ensemble of traditional musi-

cal instruments from the general region of the Indonesian ar-

chipelago. While several different types of instruments are

involved, the backbone of the gamelan consists of idio-

phones and gongs. The latter come in a wide range of sizes

and are traditionally made of bronze, although steel is now

sometimes used. The gamelan is central to the musical art of

Indonesia1 where it commands huge respect and even

reverence.

Compared to Western percussion instruments, there has

been little attention paid to gamelan gongs in the scientific

literature; a useful summary has, however, been given by

Rossing.2 There have been further studies on large gamelan

gongs,3 which are of particular interest because they show

marked non-linear behavior. Apart from a preliminary report

on the present work,4 there is only one further study on small

gamelan gongs of which the authors are aware.5 This used

finite-element models and acoustic measurements (only) to

investigate the influences of various aspects of gong geome-

try on tuning.

In the present paper the results of a study on a small

steel gamelan gong from Sarawak are reported. These gongs

are very similar in geometry to the Indonesian ones but,

rather than being cast in bronze, are hammered into the

desired shape starting from flat uniform circular metallic

plates. Finite-element modeling (FEM) (Elford and

Chalmers), electronic speckle pattern interferometry (ESPI)

(Moore, Elford, and Chalmers) and laser Doppler vibrometry

(LDV) (Halkon, Hamden, and Swallowe) have been used to-

gether with group representation theory (Perrin) and some

acoustical measurements (Halkon, Swallowe, and Perrin).

II. GONG GEOMETRY

Although gamelan gongs come in a wide range of sizes,

they all have a similar general form. Figure 1 shows the

experimentally measured half cross-section of the small

gamelan gong used in the present study taken through its

center when placed on a horizontal surface. The gong con-

sists of a central dome A on top of a roughly flat circular

plate which is terminated by a shoulder BC and then a deep

inward-sloping rim CD. It has a basic axial symmetry with

axis AE. The diameter at the widest point was 20.7 cm and

the thickness of the metal was nominally 1.5 mm. From the

figure it can clearly be seen that the thickness is slightly less

in regions of high bending due to its having been hammered

out from a flat plate. Figure 2 shows a photograph of the

gong in which the irregular nature of the surface can clearly

be seen.

Gamelan gongs are normally rung by being struck on

the central dome with a soft-headed mallet. Large gongs are

a)Author to whom correspondence should be addressed. Electronic mail:

G.M.Swallowe@lboro.ac.uk
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suspended vertically by strings; smaller ones are often orien-

tated horizontally by sitting them on parallel pairs of hori-

zontal strings.

III. THEORETICAL CONSIDERATIONS

Because of the gong’s basic axial symmetry it is con-

venient to describe it using cylindrical polar coordinates

with the z-direction lying along AE. Displacements in the

ðr; h; zÞ directions will be referred to as ðu; v;wÞ.

A. The unperturbed gong

As with other three-dimensional systems, the normal

modes of gamelan gongs will have few, if any, true nodes

(points of zero displacement). However, the individual

ðr; h; zÞ components of the motion may do so. Since acousti-

cal radiation is produced primarily by motion normal to the

surface it has become the convention to describe the modes

of bells in terms of the nodal patterns of their r-components.

Likewise for cymbals it is usual to use the z-components. In

the present case it is convenient to use the z-component on

the upper parts of the gong and the r-component for the rim.

The nodal patterns for a given mode for these regions can be

expected to marry together smoothly due to overall symme-

try requirements.

A truly axially symmetric gong is subject to the same

consequences for its normal modes as are other systems with

the symmetry group C1v such as bells,6 cymbals,7 and flat

circular plates.8 Since the modal functions form a complete

orthonormal set giving bases for all the irreducible represen-

tations of the group, these must vary like sinðmhÞ or

cosðmhÞ, where m ¼ 0; 1; 2; :::, giving degenerate pairs of

modes. The case of m ¼ 0 is exceptional in having singlet

axisymmetric modes. Thus the nodal patterns must consist

of m equally spaced “diameters” and n circles parallel to the

rim, the diameters of one doublet member lying mid-way

between those of its partner. The number pair (m, n) can be

used to specify a degenerate pair of modes of a particular

physical type. If it is desired to specify a particular member

of a doublet this can be done by adding a subscript outside

the bracket. It is possible to have modes of different physical

types with the same (m, n) values, equally well permitted by

symmetry considerations but very different in frequency, as

will be discussed in Sec. III B. All these arguments apply

equally well to the ðr; h; zÞ components of the motion

individually.

If the gong were truly axially symmetric then the actual

locations of the nodal diameters would be indeterminate

until fixed by initial conditions. However, since the gongs

are cast or formed, there are always imperfections both of

geometry and of metallurgy. These imperfections result in

the doublets being split and the locations of their nodal

diameters being fixed. Beats can subsequently be expected

to occur as in the case of bell “warble.” The gong used in the

present study deviated considerably from perfect axial sym-

metry, resulting also in significant distortions in some of the

nodal patterns.

B. Extensional and inextensional modes

The study of bells9 and other axially symmetric sys-

tems,10 as well as the ideas of Rayleigh,11 lead one to expect

that the lowest frequency modes will always involve inex-

tensional distortions of the system because this minimizes

the potential energy of displacement. In the present case this

means that if one takes a section through the gong at fixed z

the resulting ring will contain a neutral circle whose total

length remains unchanged throughout the cycle. This

requires that the radial and transverse components of the

motion to be related by

uþ @v

@h
¼ 0: (1)

Thus, using the parts of the modal functions introduced in

Sec. III A, one member of a degenerate pair may be written

u ¼ mA sinðmhÞ and v ¼ A cosðmhÞ; where A is an arbitrary

constant. So the modes have radial components that become

increasingly larger than the transverse ones as m increases.

These inextensional modes will appear in an infinite series

as one goes to higher frequencies. They will, however, even-

tually become supplemented by others, equally well-allowed

by symmetry requirements, satisfying a complementary

“extensibility” conditionFIG. 2. (Color online) Photograph of the gong.

FIG. 1. Vertical cross-section through the small gamelan gong.
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vþ @u

@h
¼ 0: (2)

This results in modes whose transverse components are m
times their radial ones. Thus for every inextensional (m, n)

pair there is a corresponding extensional one which is an

order of magnitude higher in frequency due to the increase

in potential energy from the extension. These “extensional”

modes are well-established as occurring in church bells12

and Indian elephant bells13 but seem unlikely to appear in

small gongs at frequencies low enough to be of interest.

IV. FINITE-ELEMENT MODEL (FEM)

A. Construction of the model

The structural mechanics module of COMSOL MULTIPHYSICS

was used to investigate the normal modes of the gong. The

inner and outer profiles for the half cross-section of the gong

from the center of the dome A to the bottom of the rim D

(see Fig. 1) were measured separately at a fixed value of h
using a metric coordinate measurement machine. This was

repeated for a number of different orientations. An average

was then taken for the outer half profiles and another for the

inner ones. These were fed into COMSOL as geometric data and

used to generate a three dimensional model with perfect axial

symmetry. The facilities for automatic element selection and

meshing were employed while the material properties were

taken to be those of standard mild steel. A constraint was

imposed on the top of the rim to mimic a clamp which proved

necessary when making the ESPI measurements. This broke

the axial symmetry slightly and so was expected to cause

small splits in the model’s predictions for the degenerate

pairs.

B. FEM results and discussion

The eigenfrequency analysis facility of the COMSOL pack-

age was used to calculate the frequencies and display the

modal forms of all modes it could find up to about 6 kHz. In

most cases it was easy to identify a mode’s value of m by

looking at the behavior of the top plate. However, this

became more difficult as m increased because a region of ev-

anescence extended ever further away from the dome. A pre-

liminary study suggested that the modes might be divided

into “rim” and “plate” types. However, a comparison with

results previously reported for cymbals7 made it clear that

the “rim” modes are just n ¼ 0 cases for the complete gong

where evanescence has “forced” the observable motion for

all modes with m � 3 down onto the rim.14 “Plate” modes

are those with n � 1 where the evanescent region is rela-

tively small.

The symmetry type of a mode is determined by its value

of m. The FEM correctly predicted all modes with m ¼ 0 to

be singlets and all others to be doublets (slightly split as

anticipated due to the point support). Some examples are

given in Fig. 3 where a “rim” mode and an orthogonal pair

of “plate” modes are shown in the top row. On the bottom

row the three modes which proved to be the most important

acoustically are shown.

V. EXPERIMENTAL INVESTIGATION AND DISCUSSION

A. ESPI measurements

In order to compare the FEM predictions with experi-

ment the operational deflection shapes were studied using

ESPI,15 a technique well-known for the visualization of

vibrational modes of musical instruments.16,17 The facility

employed has been described in detail elsewhere.18 The

gong was mounted on a vibration-isolated optical table

inside an anechoic chamber and excited by a loudspeaker

placed about 50 cm behind it. The speaker was driven using

a sinusoidal signal generated by a high-quality function gen-

erator /amplifier. The drive signal was carefully monitored

in order to avoid introducing harmonic and subharmonic fre-

quency content. Unfortunately the system did not permit the

gong to be supported horizontally, as it would be during nor-

mal playing. Instead it was hung vertically, clamped to a

stand along a small section near the center of the rim. This

would certainly have influenced some of the modes and had

to be taken into account when constructing the FEM and

when interpreting the results. The model included fixed

boundary conditions at the same point on the rim where the

gong was clamped in the experiments in order to make the

modeling and experimental conditions equivalent.

The identification of modes from their ESPI images was

much more difficult than those from FEM. First the gong

proved to have non-linear properties resulting in the appear-

ance of both harmonics and subharmonics of many true

modes as well as some mixed-symmetry types. There were

also, as expected and especially for cases with n � 2, some

serious pattern distortions. This was no doubt due to the

influence of the irregularities from hammering which were

largely smoothed out in the FEM because of the way in

which its precisely axially symmetric form was generated.

As the wavelengths involved in the patterns became smaller

so the modes were more sensitive to the irregularities.

Experiments looking at the top of the gong along the symme-

try axis were not sufficient because, for modes with n ¼ 0,

no nodal patterns were observed on the top plate for m � 3.

FIG. 3. (Color online) Selected modes predicted by the finite-element model.
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However, looking from the side, modes with (m, 0) for m up

to 10 were readily identified. Modes with n ¼ 1 were rela-

tively easy to identify because their single nodal circle

occurred at or near the inner edge of the shoulder. While a

few modes with n � 2 were identified, this became increas-

ingly problematic as n increased. It was decided to pay them

relatively little attention.

Figure 4 shows the ESPI images for the same modes dis-

played in Fig. 3. Clearly the modal forms are in good agree-

ment. It should be noted that the doublet pairs are somewhat

split in frequencies, as expected. Side-views for the (4,1)

modes are included to show their lack of skirt motion.

Higher frequency modes with n> 0 behaved similarly. The

(8,0) shows considerable skirt motion but very little on the

face. It, like other n¼ 0 modes with m � 3, could not be

identified by ESPI measurements from the front.

As an example of subharmonics appearing in the ESPI

results the parent modes for the orthogonal pair (6,1)A at

4469 Hz and (6,1)B at 4494 Hz are shown in Fig. 5. Also

shown are their 1/3 subharmonics at 1489 Hz and 1498 Hz.

The subharmonics have the same general appearance as their

parents but, though the driving amplitudes were of equiva-

lent level, the response was considerably lower. The

existence of these, and other, subharmonics confirms the

non-linear nature of the system.

B. LDV and acoustic measurements

To complement the ESPI measurements a Polytec

Compact Laser Vibrometer, which measures velocity in the

direction of the incident laser beam, was used to investigate

the vibratory motion at a number of sensibly selected places

on the surface of the gong. The laser beam was tightly

focused onto the surface to a spot with circa 1 mm diameter

so could be considered as taking “point” measurements. The

vibrometer voltage output, directly proportional to the sur-

face velocity, was captured via a data acquisition system on

a PC and a Fourier transform, implemented using MATLAB,

was performed to determine the frequencies present. The

gong was excited by gentle impacts at carefully chosen pla-

ces with a view to simultaneously exciting all of the vibra-

tional modes within the frequency range of interest.

The resulting spectra, an example of which is given in

Fig. 6, were quite detailed and showed the main resonant

peaks all to be extremely sharp. Not surprisingly, the singlet

(0,1) was by far the most important mode. The two pairs

(1,1) and (2,1) were also significant. Only n¼ 1 modes and

some of their (non-linear) harmonics made measureable con-

tributions. A number of peaks found did not correspond to

any modes detected by ESPI. These enabled some of the

gaps in the overall mode data, as predicted by FEM, to be

filled.

Figure 7 shows an acoustic spectral map for the gong af-

ter striking it on the dome. This was obtained under free-

field conditions with a 6 pole zero-phase shift Butterworth

high pass filter with a 250 Hz cut-off subsequently applied to

remove environmental noise. The figure again shows that the

singlet (0,1) was by far the most important mode. The split

doublet pair (1,1) were also significant. The figure clearly

shows that any other frequencies involved decay away com-

paratively rapidly.

No evidence of a second important axisymmetric mode

one octave above the (0,1), as reported by Rossing using a

small Balinese gong, was found. It is possible that he may

have been observing a (0,2) mode. However, in the present

ESPI experiments, while a true (0,1) mode was found at

458 Hz (with a [1/2] subharmonic having a closely similar

but much fainter pattern at 230 Hz), the (0,2) mode was

found at 1284 Hz. This is very remote from the (0,1) octave.

C. Comparison of frequencies

The frequency predictions of the FEM and the corre-

sponding ESPI measurements are shown in Figs. 8 and 9 for

n ¼ 0 and n ¼ 1, respectively. Frequencies above 5 kHz
FIG. 4. Selected modes observed using electronic speckle-pattern

interferometry.

FIG. 5. An example from ESPI of a pair of 1/3 subharmonics with their par-

ent modes.
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have been excluded because of the problems in interpreting

their ESPI forms. Since the n ¼ 0 “rim” doublet modes were

significantly split, only the higher frequency components are

shown, for the sake of clarity. Clearly the agreement is

excellent. In the case of the n ¼ 1 “plate” modes, the higher

frequency components of the doublets are again the only

ones shown. In this case the agreement was not nearly so

good, although the trends were identical. To emphasize this,

the FEM predictions, as plotted, have been reduced by 20%

in the graph. Such a deviation could easily be caused by var-

iations in the thickness of the top plate, due to hammering,

making the model too crude an approximation. The n ¼ 0

modes depend hardly at all upon the details of the top plate,

it being a region of evanescence for them. Rather they are

expected to depend mainly on the details of the rim’s geome-

try. Apart from the (0,1) all the modes included in these fig-

ures are of the inextensional type as described in Sec. III B.

D. Non-linearity

Non-linear behavior is well established as being an

important feature in many musical instruments.19 In the case

of percussion instruments, it is usually associated

with large amplitudes of vibration and has been reported in

FIG. 6. (Color online) Example of an

LDV spectrum for the gong struck and

detected at a discrete point.

FIG. 7. Acoustic spectral map after

striking on the dome showing the rela-

tive importance and decay of various

natural frequencies.
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large-diameter examples of cymbals, shallow gongs,20 and

gamelan gongs.3 Small gamelan gongs, being less flexible

than their larger cousins, seem less likely to achieve suffi-

ciently large amplitudes to produce non-linear effects.

However, the ESPI studies revealed numerous “modes” over

and above those expected from the FEM calculations. Nearly

all of these proved to be subharmonics of parent modes. A

typical example was discussed in Sec. V A. Only a few har-

monics were found. No subharmonics appeared for any of the

(m,0) modes apart from the (1,0) pair which both showed 1/2

examples. The (m,1) cases up to m ¼ 7 all showed clear sub-

harmonics in pairs. For m � 4 they all showed 1/3 subhar-

monics, for m ¼ 0; 1 they showed 1/2, while for m ¼ 3 both

1/2 and 1/3 were present The few (m,2) modes identified all

had either a 1/2 or a 1/3 subharmonic.

The reason for the non-appearance of subharmonics for

most of the (m,0) cases is not hard to see. For m � 2 they

involve almost no motion on the top plate due to evanes-

cence and so are restricted to the rim where large amplitudes

are improbable. Only when n � 1 does the top plate partici-

pate significantly, making it possible for the amplitudes to

become large enough to generate non-linear behavior.

Non-linear behavior was not observed acoustically. This

was as expected with such a small gong being struck with a

mallet. The energy input being spread across the whole spec-

trum; amplitudes of parent modes would simply be too low

to generate non-linear behavior. With ESPI however,

because a monochromatic signal with very high amplitude

was used, such behavior was readily observed.

E. Chladni’s Law

In the study of the normal modes of flat circular plates, a

law first proposed by Chladni21 was given some mathemati-

cal justification by Lord Rayleigh.22 His formulation showed

that, under asymptotic conditions, the frequency fm,n of a

normal mode with m nodal diameters and n nodal circles

should be given by

fm;n � Cðmþ 2nÞ2; (3)

where C is a known constant. It was shown by Rossing,23 on

analyzing the extensive data of Waller,24 that while this

equation does not work particularly well, it can be improved

by modifying it into

fm;n ¼ Cnðmþ 2nÞPn; (4)

where Cn and Pn are constants for a given plate with Pn not

differing much from 2. This equation, sometimes called

“modified Chladni’s law,” has been applied with varying

success to other axially symmetric systems including thin

rings9 and church bells.25 It has to be remembered that,

because of the asymptotic nature of the underlying deriva-

tion, the equation cannot be expected to work for low values

of (mþ 2n) which means, in the present context, low values

of m.

Because of its limited success with other axisymmetric

systems it is of interest to try to apply it to the present small

gamelan gong. Sufficient data was available only for the

n¼ 0 and n¼ 1 cases. As a trial Pn was set to 2 for both n
values. The resulting fits are shown in Fig. 10 with the lower

values of m omitted. In each case only the higher compo-

nents of the doublet pairs have been used. The fits were

extremely good and the resulting parameters are included in

Table I. From the table it can be seen that the fits to the lower

frequency components are even better than those in the fig-

ure. The fact that the fits do not pass through the origin is a

reflection of the asymptotic nature of the “law” and the

remoteness of the gong from a flat circular plate. One could

FIG. 8. Frequency vs m for n¼ 0 (higher frequency components) modes for

ESPI (�) and FEM (continuous line).

FIG. 9. Frequency vs m for n¼ 1 (higher frequency components) modes for

ESPI (�) and FEM (continuous line).

FIG. 10. Frequency vs (mþ 2n)2 for n¼ 0,1 (upper components) with low m
excluded.
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bring the two linear fits in Fig. 10 into coincidence by adjust-

ing the factor 2 on the right hand side of Eq. (4) but it is hard

to see what the physical significance of this might be.

VI. SCANNING LDV MEASUREMENTS

In order to check the ESPI results further, it was decided

to conduct a new set of experiments with the same gong,

supported similarly, but now using scanning LDV. This

technique, conceived some decades ago,26 is, like ESPI,

used in a number of sectors as an alternative to the more tra-

ditional contact vibration measurement methods but has spe-

cific advantages for measurements such as those conducted

in this study.27 It involves scanning a laser beam across the

surface of the structure of interest, addressing points of inter-

est sequentially, using a pair of orthogonally aligned mirrors.

Directing the beam onto the top surface of the gong parallel

to the symmetry axis enabled the motion in that direction to

be studied. Directing the beam normally to the axis onto the

rim, by using an angled mirror, enabled the motion there to

be investigated during the same measurement.

A. Experimental details

The facility used to perform these experiments has been

described in some detail previously.4 The gong was sus-

pended in this case by a light elastic band around its widest

point and the driving point chosen such that there was

expected to be activity in most of the modes of interest. A

miniature force transducer was attached to the gong surface

to measure the (reference) input signal. Excitation was gen-

erated using a permanent magnet electrodynamic shaker

connected to the force transducer through a pin vice and thin

wire “stinger” arrangement. A Polytec (2D) scanning LDV

system was used to measure the vibratory response of the

gong at a discrete series of points on the surface. Broadband

(white) noise, generated within the scanning LDV system

with an appropriate frequency range, was amplified using an

LDS PA25E power amplifier and used to drive the shaker.

Bursts of random excitation were used with a 5% block

length build-up and a 50% of block-length burst. These pa-

rameters gave a gong response that decayed within the ac-

quisition block such that a rectangular acquisition window

could be used without significant risk of spectral leakage.

Twenty linear averages were used to maximize the signal-to-

noise ratio in the measured mobility frequency response

functions (FRFs). Typical experimental modal analysis good

practice28 was employed to ensure that high quality data

could be realized.

Response measurement points were directly defined in

the scanning LDV software on a regular grid with enough

spatial resolution to enable representation of the mode

shapes at all frequencies of interest. The scanning LDV sys-

tem was positioned 5 m from the gong in order that the angle

of incidence of the laser beam was never more than 5� off

axis such that the sensitivity to velocity normal to the

intended measurement direction was negligible. The fre-

quency range of interest and required specified settings often

led to acquisition periods of several hours. Care was taken to

ensure that the ambient conditions and other environmental

effects did not impact significantly on the quality of the

measured data.

Modal processing of the FRFs was performed in the

Polytec scanning vibrometer software by manually defining

multiple search frequency bands within the sum FRF, from

which the peak amplitudes were automatically identified. A

least squares complex exponential curve fitting algorithm

was subsequently used to synthesize a number of single

degree of freedom damped exponentials from which the

Eigenfrequencies were extracted.

B. Scanning LDV results and discussion

The identification of the gong’s modes using scanning

LDV was relatively easy compared with ESPI. Fewer modes

were detected, but this was partly because relatively few har-

monics and subharmonics were excited. As expected, modes

became increasingly difficult to find and identify as the fre-

quency increased. Again some modes were badly distorted

and there was some evidence of mode-mixing. Similarly to

ESPI, most n¼ 0 modes could only be detected by looking

at the side-on view. In Fig. 11 a selection of the modal forms

TABLE I. Chladni’s law fits to the ESPI data.

Mode family Components m range fitted Cn R2

n¼ 0 upper 4–9 47.26 0.9925

lower 4–9 49.87 0.9894

n¼ 1 upper 2–7 48.70 0.9994

lower 2–7 48.23 0.9966

FIG. 11. (Color online) Selected modes observed using scanning laser

Doppler vibrometry.
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from scanning LDV are shown. When the top row is com-

pared with those of Figs. 3 and 4 the agreement for the (4,1)

modes is seen to be striking, except that scanning LDV

shows relatively little motion on the shoulder. This could be

attributed to the fact that, as previously described, scanning

LDV measures velocity in the direction of the laser beam.

Given the geometry of the gong, the shoulder’s motion may

be much more significant in directions not closely aligned

with the incident beam direction. The forms shown in the

second row of Fig. 11 are in even better agreement with

those in Figs. 3 and 4. In these cases there is little shoulder

motion, as expected. In the third row members of the (2,0)

and (2,1) pairs are included in order to emphasize the differ-

ences between them.

An example scanning LDV spectrum for the gong is

shown in Fig. 12. Comparing this with Fig. 6 one sees good

overall agreement between the modal frequencies although,

as expected, the relative magnitudes of the peaks differ. Also

the scanning LDV spectrum shows up the (4,1) modes which

do not appear in the LDV spectrum, although they were eas-

ily detected by ESPI. Table II shows a comparison of the fre-

quencies measured from ESPI and scanning LDV.

VII. COMPARISON OF METHODS

For both ESPI and scanning LDV methods the detection

of modes, being optical, is non-contact. In ESPI the gong

was excited acoustically with a sinusoidal signal whose fre-

quency was varied manually and tuned to find amplitude

peaks. This introduced uncertainties into the measured fre-

quencies as the peaks were sometimes rather broad. It also

made the experiments long and tedious. With scanning

LDV, on the other hand, the gong was excited mechanically

with “white noise” at a single point and the frequencies were

extracted by the software. This could also take a long time

but had the advantage of being essentially automated. ESPI

was more sensitive as a detector of modes and found

numerous subharmonics of true modes, while scanning LDV

found relatively few.

Provided the mode order did not become too high it

was, in general, not difficult to interpret the ESPI interfero-

grams on the top plate and on the shoulder. When looking

towards the rim it was sometimes difficult to identify m val-

ues but it could usually be done. With scanning LDV it was

easy to see what was happening on the top plate but with the

shoulder it was problematic. When looking at the rim using

scanning LDV it was not too difficult to establish the m val-

ues, but relatively few n¼ 0 cases could be found. This

could be attributed to a number of things including (1) a sub-

optimal choice of driving point and (2) the fact that bursts of

random excitation were used to excite all modes simultane-

ously with a significantly lower input of energy per mode

than in the case of ESPI. This reduced energy per mode may

also account for the relatively few cases of subharmonics

and other non-linear effects.

FIG. 12. (Color online) Example scan-

ning LDV frequency response function

for the gong.

TABLE II. Comparison of measured frequencies.

Modes ESPI (Hz) Scanning LDV (Hz)

(0,1) 458 470

(1,1) 698, 734 723, 745

(2,1) 2005, 2093 1986, 2031

(3,1) 2529, 2606 2506, 2556

(4,1) 3045, 3089 3008, 3073

(5,1) 3726, 3748 3580, 3661

(6,1) 4469, 4494 —, —

(1,0) 69, 99 —, —

(2,0) 240, 244 216, —

(3,0) 527, 556 528, 545

(4,0) 945, 1151 975, —

(5,0) 1388, 1807 1441, 1788

(6,0) 2227, 2344 2299, 2324

(7,0) 2941, — 2920, —

(8,0) 3436, 3594 —, —

(9,0) 4182, 4300 —, —
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Some of the discrepancies between the frequencies

measured by the two methods, as shown in Table II, are

larger than one might wish. There are at least two possible

reasons for this. First the ESPI method induced considerable

non-linear behavior, which could have caused some fre-

quency shifts away from the “true” linear values. Second,

the use of a mechanical driver in scanning LDV will have

caused slight changes in the mass and stiffness of the system

which could also result in frequency changes. Overall the

agreement between ESPI and scanning LDV is considered

reasonable although scanning LDV detected fewer modes.

Given that the two methods use very different approaches, it

is encouraging that the results are in such reasonable agree-

ment concerning “true” modes.

VIII. CONCLUSIONS

The normal modes of a 20.7 cm diameter steel gamelan

gong are now reasonably well understood and the acousti-

cally important ones identified. Expectations from slightly

broken axial symmetry were well satisfied and similarities

with cymbals, bells, and other axisymmetric systems are

clear. Non-linear behavior, mainly in the form of sub-

harmonics of true modes, has been established. The experi-

mental frequencies have been shown to satisfy a modified

version of Chladni’s law and also to agree tolerably well

with the predictions of a finite-element model. A comparison

of ESPI and scanning LDV methods has established that the

latter is also a useful technique for investigating these gongs,

especially in identifying the acoustically important low order

modes.
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