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CAYLEY MAP EMBEDDINGS OF COMPLETE GRAPHS WITH EVEN

ORDER

MICHAEL W. O’CONNOR

1. Abstract

German mathematician Claus Michael Ringel used voltage graphs to embed complete graphs

onto orientable surfaces such that none of the graph’s edges cross each other. Cayley maps do the

same whilst being simpler to work with. The goal is to determine the efficiency of Cayley maps in

embedding complete graphs onto orientable surfaces. This article focus on complete graphs of even

order with an emphasis on graphs whose orders are congruent to 6 modulo 12 and 0 modulo 12. We

establish 12 distinct classes that each have their own unique qualities. Through the generalization

of a previous technique, we prove a nontrivial bound on the Cayley genus of graphs whose order is

congruent to 6 modulo 12. We also show that Cayley maps cannot embed a complete graph onto

its optimal genus for 8 out of the 12 classes provided the graph’s order is greater than 6.

Keywords: Cayley map, Cayley genus, complete graph embeddings, Claus Ringel, J.W.T. Youngs

2. Introduction

A research topic in the area of topological graph theory is how to embed complete graphs

onto orientable surfaces such that none of the graph’s edges cross each other. One application that

has been brought up involves the construction of a computer chip [2]. To prevent the chip from

short-circuiting, one needs to ensure that none of its wires are crossing. In order to achieve this

for a chip with many wires, one must drill holes through the chip’s surface, or add layers to the

chip. The more wires there are, the more holes that need to be drilled, and the less obvious it

becomes as to what the actually wiring itself should look like on the chip. Cayley maps can be used

to help solve this problem. A Cayley map embedding provides a cyclical edge rotation that can

be followed to map the wires on the surface of the chip such that no edges cross. While Ringel’s

voltage graphs were also effective in doing so, they used complex mathematical techniques, while

Cayley maps deploy relatively simple methods. That being said, it is not always possible for Cayley

maps to embed graphs onto an orientable surface of their optimal genus. The purpose of this paper

is to explore how effective Cayley maps are at embedding complete graphs onto orientable surfaces,

particularly when the graph is of an even order.
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Miriam Schleinblum has previously researched the same topic. In her paper, she focused on

graphs of a prime order, and primarily worked under the group Zn [6]. She proposed a conjecture

that stated if a graph’s order is congruent to 7 (mod 12), then Cayley maps can be used to embed

the graph onto an orientable surface of its genus. She noticed this because many of the numbers

which are congruent to 7 (mod 12) are prime, and she was able to see the pattern that was occurring.

Schleinblum later developed a program that was able to create Cayley map embeddings to see how

well Zn did at embedding graphs when their order was congruent to 7 (mod 12). The computer

was able to embed graphs with up to 115 vertices which provides enticing yet inconclusive evidence

towards her conjecture. This paper sorts out why graphs of an order congruent to 7 (mod 12) are

special, and outlines other distinct classes of graphs that hold its same unique characteristics.

A year later, Hannah Hendrickson did research on creating triangular faces in the embedding

to maximize the number of faces the embedding produces, which minimizes the embedding’s genus.

In her article, Hendrickson tackles the issue of ensuring a Cayley map’s rotation of edges is a cycle.

She invented a new structure called a GP graph, which stands for group partition graph. In her

paper, she proved that if the GP graph of a Cayley map embedding has a non-backtracking Eulerian

tour, then the rotation of edges it produces truly is a cycle [3]. This combined with a technique

called graph reduction helps immensely in formulating valid Cayley map embeddings. This thesis

will show how her techniques can be used to potentially create optimal Cayley maps for an entire

family of complete graphs.

In Section 3, we will establish the definitions and notation needed to understand Cayley map

embedding, and give an example of a Cayley map embedding. In Section 4, we set up the 12

distinct classes of Cayley maps based on the order of the complete graph at hand. In Section 5, we

outline a strategy on how to immediately disqualify Cayley map embeddings, and prove theorems

that come as a consequence of these disqualification techniques. Most notably, Section 5 contains a

Theorem that is an absorption of Schleinblum’s 12,7 Conjecture. Theorems for complete graphs of

an even order are outlined in Section 6, along with a non-trivial bound on the Cayley genus when

the complete graphs order is congruent to 6 (mod 12). Section 7 contains a Conjecture about the

non-trivial bound provided in Section 6, and proposes methods on how to potentially prove said

Conjecture. Lastly, Section 8 will summarize the implications of the research and establish new

questions in the research area that future research pupils can work on.
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3. Definitions and Notation

This Section will introduce fundamental topics in topological graph theory and abstract alge-

bra. Understanding these concepts is pertinent towards conceptualizing Cayley map embedding.

Around the end of the Section, Cayley map embedding will be explained by combining the defini-

tions outlined in this Section. Two examples of Cayley map embedding will be provided in order

to give the reader some intuition of the technique.

Definition 1. We say n is congruent to r modulo d (denoted n ≡ r (mod d)) if and only if

n = dk + r for some k ∈ Z.

Definition 2. A set, G, with a binary operation, ∗, is a group (denoted (G, ∗), or just G) if. . .

(1) There exists an identity element in the set (there exists an e ∈ G such that for all g ∈ G,

g ∗ e = e ∗ g = g).

(2) The set is closed under inverses (for all g ∈ G, there exists some g−1 ∈ G such that

g ∗ g−1 = g−1 ∗ g = e).

(3) The operation is associative (for all g, h, f ∈ G, (g ∗ h) ∗ f = g ∗ (h ∗ f)).

Definition 3. Let Zn = {0, 1, 2, . . . , n− 1}.

Definition 4. Let +n be the binary operation on Zn such that g +n h = k if and only if g + h ≡

k (mod n).

Example 5. (Zn,+n) is a group, and is typically denoted as just Zn.

Example 6. (Zn×Zm,+) is a group where if g1, g2 ∈ Zn and h1, h2 ∈ Zm, then (g1, h1)+(g2, h2) =

(g2 +n h1, h1 +m h2).

Definition 7. A graph, G = (V,E) is comprised of a vertex set V and an edge set E. Each edge

is associated to either one or two vertices, called the endpoints of the edge.

Definition 8. The order of a graph denotes the cardinality of its vertex set. The size of a graph

denotes the cardinality of its edge set.
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Definition 9. Two vertices are adjacent if and only if they are both associated to a single edge.

Definition 10. The complete graph, Kn, has n vertices where each vertex is adjacent to every

other vertex. Kn has order n and size
n(n− 1)

2
.

Figure 1. K3, K4, and K5

The next part of this Section will be devoted towards describing orientable surfaces and how

graphs are embedded onto them. An orientable surface is one in which clockwise rotation is well-

defined. On some surfaces, such as a Möbius strip, one can move an object along a particular path

on the surface and have the object end up at the same point it started at but it comes back as its

mirrored image. This cannot happen on a sphere, which is an example of an orientable surface. In

1866, Camille Jordan proved that the sphere, torus, double-torus, and so on make up all orientable

surfaces up to topologically homeomorphism [4]. These surfaces are characterized by the number

of holes they have. The number of holes an orientable surface has is called its genus.

Figure 2. The sphere, torus, and double-torus

Figure 3. The flat torus

Definition 11. An embedding of a graph G = (V,E) onto a surface S consists of. . .

(1) A one-to-one function fV : V → S.
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(2) A continuous, one-to-one function fe : [0, 1] → S for each e ∈ E, such that if v0 and

v1 are endpoints, then fe(0) = v0 and ve(1) = v1 (or vice versa) with the property that

fe1(x) = fe2(y) for any x, y ∈ (0, 1) implies e1 = e2 (and x = y).

The larger the size of the graph, the greater the orientable surface’s genus must be in order

to embed the graph onto its surface without having any edges cross. The minimum genus a graph,

G, needs in order to embed onto an orientable surface is called the graph’s genus, and is denoted

as γ(G). In 1968, Claus Ringel and J.W.T. Youngs proved a formula for the genus of a complete

graph [5]. An optimal embedding embeds the graph onto a surface of the graph’s genus. A two-cell

embedding is an embedding for which after mapping vertices and edges onto an orientable surface,

faces are formed that are each homeomorphic to an open disk in R2. From now on, any time the

word “embedding” is used, assume that it is a two-cell embedding. The faces formed by a two-cell

embedding is designated F .

Definition 12. (Ringel’s Theorem) The genus of a complete graph is

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
.

Theorem 13. For all n ∈ N and n ≥ 3, γ(Kn+12) = γ(Kn) + 2n+ 5.

Proof. According to Ringel’s Theorem,

γ(Kn+12) =

⌈
((n− 3) + 12)((n− 4) + 12)

12

⌉
=

⌈
(n− 3)(n− 4)

12

⌉
+ 2n+ 5

= γ(Kn) + 2n+ 5.

□

Definition 14. (Euler characteristic formula) The Euler characteristic, χ, of an embedding is

χ = |V | − |E|+ |F |,

where the genus, g, of the surface is

g =
2− χ

2
.
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Swiss mathematician Leonhard Euler showed that that every graph embedded in the plane or

on a sphere has an Euler characteristic of 2 [1]. It was later proven that the Euler characteristic is

an invariant of any two-cell embedding on a surface given the surface’s genus.

Definition 15. Suppose H is a group with n elements and X is a subset of H − {e} that is closed

with respect to inverses. The Cayley graph CG(H,X) is a graph on n vertices, labeled by the n

elements of H. The edges are determined by X : vertices u and v are adjacent if and only if there

exists some x ∈ X such that u = v ∗ x.

Figure 4. CG(Z4, {1, 2, 3})

Figure 4 shows that K4 can be represented as the Cayley graph CG(Z4, {1, 2, 3}), where each

of the edges are determined by the non-zero elements of Z4. For instance, start at 0. Notice that

1 ∈ X and 1 = 0+4 1. According to Definition 15, this means that 0 and 1 must be adjacent. The

same is true for 1 and 2, 2 and 3, and 3 and 0. Hence, the blue edges are generated by 1. One could

also say that 3 is generating the blue edges too. Lastly, the red edges are generated by 2, since

3 = 1 +4 2 and 2 = 0 +4 2. Thus, all the vertices will be adjacent to one another since each vertex

can reach any other vertex by the addition of some element in X. This ensures that the graph is

complete. However, notice how Figure 4 has two edges which cross each other. Cayley maps are

used to embed Cayley graphs onto orientable surfaces without having edges cross.

Definition 16. The Cayley map CM (H, ρ) embeds Cayley graph CG(H,X) onto a surface, where

X is a subset of H − {e} that is closed with respect to inverses and ρ = (x1, x2, . . . , xk) is a

cyclic permutation of X. The Cayley graph CG(H,X) is embedded in a surface so that ρ gives the

counterclockwise rotation of edges around each vertex in the embedding.
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Figure 5. The counterclockwise rotation of edges around each vertex of a particular
Cayley map

Figure 5 illustrates the counterclockwise rotation of edges around each vertex of a Cayley map

with ρ = (x1, x2, . . . , xk). As an example, we will go back to K4 with CM (Z4, (1, 3, 2)) as its Cayley

map.

Figure 6. CM (Z4, (1, 3, 2)) on a flat torus

Figure 7. CM (Z4, (1, 3, 2)) embedded on a torus

In Figure 6, a rectangle is being used to represent a torus. Figure 6 shows that ρ = (1, 3, 2)

determines the counterclockwise rotation of edges around any particular vertex v ∈ Z4. By adding

non-zero elements to any vertex, we can reach each of the other vertices in order to make the graph

complete. For example, start at the vertex 1. Notice that there is a red arrow that creates an

edge between 1 and 2 by adding 1 ∈ X to 1. Now, note the next edge pointing out from 1 in the
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counterclockwise direction. This edge is adding 3 ∈ X to 1 to make vertices 1 and 0 adjacent. The

last edge in the counterclockwise rotation is adding 2 ∈ X to 1 to produce an edge around the torus

to the vertex 3. The reason why this edge has no directed arrows is because 2 is its own inverse

under Z4. Hence, ρ = (1, 3, 2) provides the order of the counterclockwise rotation of edges around

every vertex in CM (Z4, (1, 3, 2)).

The edges of the embedding come together to form faces. From Figure 7, we can see that

the number of vertices, edges, and faces is 4, 6, and 2 respectively. From Definition 14, χ =

|V | − |E| + |F | = 4 − 6 + 2 = 0, and the genus of the embedding is g =
2− χ

2
= 1. Hence,

CM (Z4, (1, 3, 2)) is embedded on a torus. Since g ̸= γ(Kn), the genus of CM (Z4, (1, 3, 2)) does not

match the genus of K4, making the Cayley map embedding’s genus suboptimal. Later on in the

paper, it will be proven that Cayley map CM (Z12k+4, ρ) never embeds K12k+4 onto its genus. Next,

we will use Cayley map CM (Z2×Z2, (0, 1), (1, 0), (1, 1)) to optimally embed K4 onto a sphere.

(0,0)

(1,1)

(1,0)(0,1)

Figure 8. CM (Z2 × Z2, ((0, 1), (1, 0), (1, 1))) embedded on a sphere

In Figure 8, a square is being used to represent a sphere. This square can also be viewed as

a section of a sphere, with the Cayley map being embedded onto that section. Notice that Figure

8 has no directed arrows since all the elements in X = {(0, 1), (1, 0), (1, 1)} are their own inverses

under Z2 ×Z2. Each element of X is color-coded along with the edges that said element creates in

the embedding. Again, the edges formed around each vertex are generated by the counterclockwise

rotation specified in ρ. One can see that the embedding creates 4 faces. Therefore, the embedding

has an Euler characteristic χ = 4 − 6 + 4 = 2. Hence, g =
2− χ

2
= 0, which tells us that the

embedding is on a sphere. Going back to Ringel’s Theorem, γ(K4) = 0, so the best we can do is

map K4 on a sphere. Since g = γ(K4), Cayley map CM (Z2×Z2, ((0, 1), (1, 0), (1, 1))) is an optimal

embedding of K4, and γc(K4) = γ(K4).
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Another way to describe the faces of a Cayley map is by looking at λ, which is a permutation

of disjoint cyclic permutations where each factor in λ describes a face type. For example, Figure 6

has 2 face types. One face type is generated by the blue arrows (corresponding to 3 in X) and the

other face type is generated by a mixture of the red and green arrows (corresponding to 1 in X and

2 in X respectively). Therefore, there should be two disjoint cyclic permutations in λ that describe

these 2 face types. The following definition outlines the relationship between ρ and λ, and will be

used to calculate the λ of CM (Z4, (1, 3, 2)) after a brief explanation of the surrounding notation

and nature of λ.

Definition 17. Suppose H is a group and X is a subset of H that is closed with respect to inverses.

Then λ(x) = ρ(x−1) (and consequently, ρ(x) = λ(x−1)).

If j = (x1x2 . . . xn) is a cyclic permutation, then |j| denotes the number of elements in j. So

|j| = n in this example. We also define the multiplicity of j, denoted mult(j), to be the order of

x1 ∗ x2 ∗ · · · ∗ xn in the group of the embedding X. That is, mult(j) = m where m is the smallest

positive integer such that (x1 ∗x2 ∗ · · · ∗xn)m = e. When writing λ, we write λ = λ1 ·λ2 · · ·λm as a

product of m disjoint cyclic permutations. The face length of λi, denoted FL(λi), is |λi| ·mult(λi),

and represents the number of sides of the polygon generated by λi. The number of faces produced

by λi can then be found by deploying the formula FN(λi) =
n|λi|

FL(λi)
=

n

mult(λi)
, where n is the

number of vertices. This equation is significant since the goal of this paper is to maximize the

number of faces each λi produces in order to augment the Euler characteristic of the Cayley map

embedding, which minimizes the genus of the surface.

Going back to Figure 6 where ρ = (1, 3, 2), we can use Definition 17 to calculate λ and show how

each λi describes a face type. To start, λ(1) = ρ(1−1) = ρ(3) = 2. Next, λ(2) = ρ(2−1) = ρ(2) = 1,

so λ1 is (1, 2). Lastly, λ(3) = ρ(3−1) = ρ(1) = 3, so 3 maps back to itself, making λ2 equal to

(3). The cyclic permutation, λ2, describes the face type in Figure 6 that is created by the blue

arrows. Next, λ1 describes the face formulated by the green and red arrows since one can alternate

traveling along the red and green arrows and end up back at their original vertex. To calculate the

number of faces CM(Z4, (1, 3, 2)) produces, we have to deploy the face number formula, FN(λi),

on each λi and sum them all together. For λ1, FN(λ1) =
n

mult(λ1)
=

4

ord(1 + 2)
= 1. Similarly,

for λ2, FN(λ2) =
n

mult(λ2)
=

4

ord(3)
= 1. This gives us a total of 2 faces, which is exactly what
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is observed in Figures 6 and 7. The next definition will describe the average number of faces an

element produces.

Definition 18. If x ∈ λi, then . . .

AF (x) =
FN(λi)

|λi|
.

If λi = (x) is a factor of λ with multiplicity 3, then FN(λi) =
n

3
, and AF (x) =

n/3

1
=

n

3
.

Hence, the single element x produces on average
n

3
faces. If λi = (x, y, z) is a factor of λ with

length 3 and multiplicity 1, then FN(λi) =
n

1
= n, and AF (x) = AF (y) = AF (z) =

n

3
. Ergo, each

of the 3 elements x, y, and z produces on average
n

3
faces. The following Theorems prove that no

element in λ can produce n or
n

2
faces.

Theorem 19. For all x ∈ λ, AF (x) ̸= n.

Proof. Suppose the opposite is true, and let λi be the particular factor of λ this x belongs to. Then,

FN(λi)

|λi|
= n

n

mult(λi)|λi|
= n

1

mult(λi)
= |λi|.

Therefore, since mult(λi), |λi| ∈ N, mult(λi) = 1, and |λi| = 1. This means λi = (e), but (e) can’t

be a factor of λ since e /∈ X, which is a contradiction. Hence, AF (x) ̸= n. □

Theorem 20. For all x ∈ λ, AF (x) ̸= n

2
.

Proof. Again, suppose the opposite is true, and let λi be the particular factor of λ this x belongs

to. Then,

FN(λi)

|λi|
=

n

2

n

mult(λi)|λi|
=

n

2

2

mult(λi)
= |λi|.
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Therefore, since mult(λi), |λi| ∈ N, either mult(λi) = 1 and |λi| = 2, or mult(λi) = 2 and |λi| = 1.

Assume the former is the case. Then, we know that λi = (x, x−1) for some x ∈ X. Therefore,

according to Definition 17, ρ(x) = λ(x−1) = x. Hence, ρ contains a factor (x). Thus, ρ is not a

cyclic permutation and would not create a Cayley map. Now, assume mult(λi) = 2 and |λi| = 1.

We know that λi = (x) where x is its own inverse under the group since mult(λi) = 2. Ergo,

x = x−1. Therefore, ρ(x) = λ(x−1) = λ(x) = x. Thus, Similarily to the last case, ρ would not be a

cycle, and a Cayley map would not be produced. Hence, AF (x) ̸= n

2
. □

Definition 21. Let the number of elements in X that produce on average
n

i
faces be denoted as

mi.

Definition 22. Let x ∈ X. If AF (x) =
n

3
, then let x be called maximum face-generating. Other-

wise, the element is submaximum face-generating.

Theorem 23. (The Cayley map face formula) The number of faces a Cayley map embedding

produces is

|F | =
∞∑
i=3

n

i
mi =

∑
x∈X

AF (x).

Definition 24. The minimum genus that can be produced by a Cayley map embedding of a graph

G is γc(G).

Definition 25. The minimum genus that can be produced by a Cayley map of a graph G using a

cyclic group is γ⟲c (G).

Observation 26. (The trivial Cayley map bound) For all n ∈ N, γc(Kn) ≥ γ(Kn).

4. The 12 Classes

Given there are different elements that create a different number of faces, it is important to

write the number of faces needed to be produced in terms of these mi’s in order to figure out

which groups are good to use and which are not. Let Fγ(n) and Fγc(n) be the number of faces

required to produce Kn’s genus and Cayley genus respectively. Similarily, let χγ(n) and χγc(n) be

the Euler characteristic required to produce Kn’s genus and Cayley genus respectively. Recalling
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the previously stated goal to maximize the number of faces a Cayley map embedding produces

to minimize its genus, one might assume that it is preferable to have all of the elements in X be

maximum face-generating. To calculate how many faces would be created, think back to the fact

that there are always n − 1 elements in X for the Cayley embedding of Kn. Therefore, to have

the Cayley map embedding produce as many faces as possible, we would want all n − 1 elements

in X to produce on average
n

3
faces. In other words, we would have m3 = n− 1. Now, since every

element in X is maximum face-generating, we know that mi = 0 for all i ≥ 4. Hence, according

to Definition 23, Fγc(n) =
n

3
(n − 1). While this goal to have all the elements of λ be maximum

face-generating is logical, it is oftentimes impossible. In fact, Theorem 27 and Theorem 28 prove

that Fγc(n) has to be less than
n

3
(n− 1) for most cases.

Theorem 27. Let n = 12k+a for some k ∈ N0, 0 ≤ a ≤ 11, and let c =
a(a− 7)

12
. For all n ∈ N0,

Fγ(n) =
n

3
(n− 1)− 2(⌈c⌉ − c).

Proof. Let n = 12k + a for some k ∈ N0 and 0 ≤ a ≤ 11. Then,

n

3
(n− 1) =

12k + a

3
(12k + a− 1)

= 48k2 − 4(2a− 1)k +
a(a− 1)

3
.

Now, we will use the Euler Characteristic formula to solve for Fγ(n) in terms of just n and c.

Fγ(n) = χγ(n)− V + E

= 2− 2γ(Kn)− V + E

= 2− 2

⌈
(n− 3)(n− 4)

12

⌉
− n+

n(n− 1)

2

= 2− 2

⌈
(12k + (a− 3))(12k + (a− 4))

12

⌉
− (12k + a) +

(12k + a)(12k + (a− 1))

2

= 2− 2

(
12k2 + k(2a− 7) +

⌈
a(a− 7)

12

⌉
+ 1

)
− (12k + a) +

(
72k2 + k(12a− 6) +

a(a− 1)

2

)
= 48k2 + 4(2a− 1)k +

a(a− 3)

2
− 2

⌈
a(a− 7)

12

⌉
= 48k2 + 4(2a− 1)k +

a(a− 1)

3
− a(a− 1)

3
+

a(a− 3)

2
− 2

⌈
a(a− 7)

12

⌉
=

n

3
(n− 1)− 2(⌈c⌉ − c).
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=
n

3
(n− 1) +

a(a− 7)

6
− 2

⌈
a(a− 7)

12

⌉
=

n

3
(n− 1)− 2(⌈c⌉ − c).

□

n ≡ a (mod 12) Fγ(n)
a = 4 n

3 (n− 1)

a = 5 n
3 (n− 1)− 5

3
a = 6 n

3 (n− 1)− 1
a = 7 n

3 (n− 1)

a = 8 n
3 (n− 1)− 2

3
a = 9 n

3 (n− 1)− 1
a = 10 n

3 (n− 1)− 1

a = 11 n
3 (n− 1)− 2

3
a = 12 n

3 (n− 1)
a = 13 n

3 (n− 1)− 1

a = 14 n
3 (n− 1)− 5

3
a = 15 n

3 (n− 1)

Table 1. The number of faces required to produce an optimal embedding

Theorem 28. If Fγ(n) <
n

3
(n− 1), then Fγc(n) <

n

3
(n− 1).

Proof. For the sake of contradiction, suppose there existed some Cayley map embedding for Kn

such that Fγ(n) <
n

3
(n− 1) and Fγc(n) ≥

n

3
(n− 1). Then,

γc(Kn) =
χγc(n)− 2

−2

=
V − E + Fγc(n)− 2

−2

<
V − E + Fγ(n)− 2

−2

=
χγ(n)− 2

−2

= γ(Kn).

Having γc(Kn) < γ(Kn) is a direct contradiction to Ringel’s Theorem. □

Plugging in the various a-values yields Table 1. Table 1 shows that there are 12 distinct classes

that require a certain number of faces to be produced by the Cayley map embedding in order for
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the Cayley genus to match the genus of the complete graph. An interesting pattern to note about

Table 1 is that there is a line of symmetry between a = 9 and a = 10. More formally, suppose we

have two distinct a-values called a1 and a2, where n1 = 12k + a1 and n2 = 12m+ a2. Due to this

line of symmetry, we know that if a1 + a2 = 19, then Fγ(n1) and Fγ(n2) will be the same formulas

in terms of n1 and n2 respectively. Also, Table 1 tells us that if a is even, then Fγ(n) in terms of n

is the same as Fγ(n+3) in terms of n+3. Table 1 also shows that if a is odd, then Fγ(n) in terms

of n is the same as Fγ(n − 3) in terms of n − 3. Given these observations, a couple of Tables can

be made that pair off these a-values in unique ways.

Fγ(n) → n
3 (n− 1) n

3 (n− 1)− 2
3

n
3 (n− 1)− 1 n

3 (n− 1)− 5
3

a = 4, 15 a = 8, 11 a = 6, 13 a1 = 5, a2 = 14
a = 7, 12 a = 9, 10

Table 2. Pairs based on Fγ(n) and the the line of symmetry

Fγ(n) → n
3 (n− 1) n

3 (n− 1)− 2
3

n
3 (n− 1)− 1 n

3 (n− 1)− 5
3

a ≡ 0 (mod 3) a = 12, 15 a = 6, 9
a ≡ 1 (mod 3) a = 4, 7 a = 10, 13
a ≡ 2 (mod 3) a = 8, 11 a = 5, 14

Table 3. Pairs based on Fγ(n) and n (mod 3)

5. Disqualifying Embeddings

We can now use Table 1 to derive contradictions for Cayley map embeddings that were pre-

viously thought of as being hypothetically possible by choosing the various mi-values and seeing

whether or not such a mapping is possible. The 3 main contradictions that can be derived using

Table 1 are as follows.

(1) The existence of such an embedding would contradict Ringel’s Theorem.

(2) The embedding would create a non-integer number of faces.

(3) The embedding would produce a non-integer genus.

Theorem 28 is a great example of deriving a contradiction via one of the 3 options above. Theorem

28 tells us that for the majority of classes, m3 ̸= n − 1. That is, at least one of the elements

in λ is submaximum face-generating. Therefore, an assessment needs to be done to determine an

alternative, hypothetically possible Cayley map embedding that produces the most amount of faces.

Notice when m4 increases by 1 and m3 decreases by 1, the total number of faces the embedding
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produces suffers a net loss of
n

3
− n

4
=

n

12
faces. When an m5 replaces an m3,

n

3
− n

5
=

2n

15
faces

are taken away. In general, when mi optimal face-generating elements are replaced by mi
n

i
face-

generating elements, the net loss of the number of faces is
n

3
mi −

n

i
mi =

(i− 3)n

3i
mi. Therefore,

the goal is to minimize
∞∑
i=4

(i− 3)n

3i
mi for some fixed natural number n, which really means we

are minimizing
∞∑
i=4

(i− 3)

3i
mi, since n is always positive. To make the notation more digestible, let

a = (ai) be a sequence vector where entry ai =
i

3(i+ 3)
, and let m = (bi) also be a sequence vector

whose entry bi = mi+3. The goal is to determine the minimum value of the single entry in am such

that m has corresponding mi-values that can hypothetically produce a Cayley map embedding.

Let the dot product of a and m be called σ(m).

a =

[
1

12

2

15

1

6
· · ·

]
m =

[
m4 m5 m6 · · ·

]
a • m = σ(m) =

∞∑
i=4

(i− 3)

3i
mi

The quantity σ(m) is a calculation of the number of faces lost in an embedding divided by

n compared to when all the elements of an embedding are optimal face-generating. Therefore, for

any Cayley map embedding, F =
n

3
(n−1)−σ(m)n. When a value in the vector m is not specified,

assume that the value is 0. Before putting these tools into practice, it is essential to create an

ordering of values for m to see which embeddings produce the most amount of faces whilst not

immediately producing a contradiction. There are a couple of dimensions at play. As the number

of submaximum face-generating elements increase, the number of faces lost increases. Likewise,

the higher the i-value of the mi the submaximum face-generating element is assigned to, the less

amount of faces that are produced. Hence, in order from least to greatest, the values of m that

produce the smallest values for σ(m) are contained in the following list.

m =
[
1 0 0 · · ·

]
,
[
0 1 0 · · ·

]
,
[
0 0 1 · · ·

]
,
[
2 0 0 · · ·

]
,
[
0 0 0 1 · · ·

]
, . . .

σ(m) =
1

12
,
2

15
,
1

6
,
1

6
,
4

21
, · · ·

Since the entries of a strictly increase, the maximum number of faces produced when there

are 2 submaximum face-generating elements occurs when m4 = 2, which corresponds to the fourth

vector in the list above. This means if there are 2 or more submaximum face-generating elements,

then the associated σ(m)-value is greater than or equal to the σ(m)-value of the first three vectors
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in the list. This fact assures that the first four vectors of our list truly produce the 4 smallest

σ(m)-values. We can disqualify embeddings by checking to see if any of the first few m-values from

the list derive any of the immediate contradictions listed towards the beginning of this section.

This technique can be deployed to prove the following important Theorem.

Theorem 29. If n = 12k + a for some k ∈ N0, a ∈ {8, 9, 10, 11, 13, 14, 17, 18}, then γc(Kn) >

γ(Kn).

Proof. By Table 1, Fγ(n) <
n

3
(n − 1). According to Theorem 28, Fγc(n) <

n

3
(n − 1). Ergo,

there is at least 1 submaximum face-generating element in the Cayley map embedding. Hence, an

assessment needs to be done on the various values of σ(m) to see what next best embedding is

hypothetically possible. We start with the next best case that produces the most amount of faces.

According to the ordered list of m’s, the first scenario to check is to have m4 = 1. Assume such is

the case. Then,

Fγc(n) =
n

3
(n− 1)− n

12

=
n

3
(n− 1)− 12k + a

12

=
n

3
(n− 1)− k − a

12
.

Therefore, since
a

12
is not an integer, the embedding would produce a non-integer number of faces,

which is impossible. The next best case to assess is to have m5 = 1. For this scenario, the proof

will be broken up into 2 cases. If a ∈ {8, 9, 10, 11, 13, 18}, then

Fγc(n) =
n

3
(n− 1)− 2n

15

=
n

3
(n− 1)− 2(12k + a)

15

<
n

3
(n− 1)− 1

≤ Fγ(n) due to Table 1.
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Lastly, assume a ∈ {14, 17}. Deploying a similar argument to that which was used in the previous

case yields

Fγc(n) =
n

3
(n− 1)− 2n

15

=
n

3
(n− 1)− 2(12k + a)

15

<
n

3
(n− 1)− 5

3
for all k ≥ 0, a ∈ {14, 17}

= Fγ(n) due to Table 1.

Thus, for both cases, Fγc(n) < Fγ(n), and so γc(Kn) > γ(Kn). □

Corollary 30. If γc(Kn) = γ(Kn), then n ≡ 0, 3, 4, 7 (mod 12) or n = 5, 6.

Proof. This statement is the contrapositive of Theorem 29 provided that γc(Kn) ̸< γ(Kn). □

In fact, Scheinblum showed that for n = 3, 4, 5, 6, 7, γc(Kn) = γ(Kn) [6].

Lemma 31. For all n ∈ N0, if Fγc(n) ≤ Fγ(n)− k where k ∈ N0, then γc(Kn) ≥ γ(Kn) +
k

2
.

Proof.

γc(Kn) =
χγc(n)− 2

−2

=
V − E + Fγc(n)− 2

−2

≥ V − E + Fγ(n)− k − 2

−2

=
V − E + Fγ(n)− 2

−2
+

k

2

=
χγ(n)− 2

−2
+

k

2

= γ(Kn) +
k

2
.

□

Corollary 32. For any n ∈ N0, if Fγc(n) = Fγ(n)− k where k ∈ N0, then γc(Kn) = γ(Kn) +
k

2
.

Proof. This proof is the same as the proof for Lemma 31, but instead equality holds throughout. □
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6. Theorems for Complete Graphs with Even Order

Lemma 33. For all n ∈ N,
2n−1∑
i=1

i ≡ n (mod 2n).

Proof.

2n−1∑
i=1

i =
2n(2n− 1)

2

= 2n2 − 2n+ n

= 2n(n− 1) + n

≡ n (mod 2n).

□

Theorem 34. If n ≡ 4 (mod 12), then γ⟲c (Kn) > γ(Kn).

Proof. For the sake of contradiction, assume n = 12k + 4 for some k ∈ N0 and suppose γ⟲c (Kn) =

γ(Kn). According to Table 1, n ≡ 4 (mod 12) implies Fγ(n) =
n

3
(n − 1). This means that for all

i ∈ N, either |λi| = 3 whilst mult(λi) = 1 or |λi| = 1 whilst mult(λi) = 3. Let t and s denote

the number of λi’s with the former and latter conditions respectively. Since λ has a total of n− 1

elements, it must be true that

3t+ s = n− 1

= 12k + 4− 1

= 3(4k + 1).

Therefore, s = 3(4k + 1 − t). Hence, s must be divisible by 3. It is commonly known that the

group Zn has at most 2 elements of order 3, so 0 ≤ s ≤ 2. Therefore, because s must be divisible

by 3 and 0 ≤ s ≤ 2, s = 0, and t = 4k + 1. Since the sum of each triple is 0, the sum of all the

triples must be 0. This would imply that the sum of all the elements of Zn is 0, which is a direct

contradiction to Lemma 33. Since every cyclic group is isomorphic to Zn, we know that no cyclic

group can be used to embed Kn optimally if n ≡ 4 (mod 12). □

Lemma 35. If n = 12k + 6 for some k ∈ N0. then 15 divides n if and only if k ≡ 2 (mod 5).
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Proof. Let k = 5m+ r for some m ∈ N0 and 0 ≤ r ≤ 4. Then,

n

15
=

12k + 6

15

=
12(5m+ r) + 6

15

=
60m+ 12r + 6

15

= 4m+
6(2r + 1)

15

= 4m+
3(2r + 1)

5
.

Since 3 and 5 are relatively prime, 5 divides 3(2r + 1) if and only if 5 divides 2r + 1, which occurs

precisely when r = 2. Hence, k ≡ 2 (mod 5). □

Theorem 36. If n = 12k + 6 for some k ∈ N0, then γc(Kn) ≥ γ(Kn) + k.

Proof. According to Table 1, Fγ(n) =
n

3
(n − 1) − 1, so Fγc(n) <

n

3
(n − 1) due to Theorem 28.

Hence, the next best scenario is to have m4 = 1. Assume such is the case. Then,

Fγc(n) =
n

3
(n− 1)− n

12

=
12k + 6

3
(12k + 6− 1)− 12k + 6

12

= (4k + 2)(12k + 5)− k − 1

2
.

Ergo, a non-integer number of faces is produced, which cannot occur. Now, for the m5 = 1 case, it

follows that Fγc(n) =
n

3
(n− 1)− 2n

15
. The question is whether or not

2n

15
can ever produce a whole

number amount of faces. That is, when does 15 divide 2n? Well, since 2 and 15 are relatively prime

15 divides 2n if and only if 15 divides n. Due to Lemma 35, we know that 15 divides n if and only

if k = 5m+ 2 for some m ∈ N0. Accordingly, assume k = 5m+ 2 for some m ∈ N0. Then,

Fγc(n) =
n

3
(n− 1)− 2n

15

=
n

3
(n− 1)− 2(12k + 6)

15

=
n

3
(n− 1)− 2(12(5m+ 2) + 6)

15

=
n

3
(n− 1)− 8m− 4
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=
n

3
(n− 1)− 1 + 1− 8m− 4

= Fγ(n) + 1− 8m− 4

= Fγ(n)− 8m− 3.

Therefore, γc(Kn) = γ(Kn)+4m+
3

2
due to Corollary 32. Thus, this results in a non-integer genus,

which is again a contradiction. Next, assume m4 = 2 or m6 = 1. This implies

Fγ(n)− Fγc(n) =
n

3
(n− 1)− 1−

(n
3
(n− 1)− n

6

)
=

n− 6

6

= 2k.

Therefore, Fγc(n) = Fγ(n)−2k. According to Corollary 32, γc(Kn) = γ(Kn)+k. In all other cases,

σ(m) >
1

6
, which means the embedding would produce less faces than the case that was just assessed

where m4 = 2 or m6 = 1. Hence, γc(Kn) > γ(Kn)+ k. Thus, in all cases, γc(Kn) ≥ γ(Kn)+ k. □

7. Finding the Cayley Genus of Complete Graphs with Order Congruent to 6

Modulo 12 Using GP Graphs

Definition 37. The GP graph (short for group partition graph) of a Cayley map has vertex set

V = {λ1, λ2, . . . , λm} where λi and λj are adjacent if and only if x ∈ λi and x−1 ∈ λj for some

x ∈ X.

Definition 38. A backtrack occurs when an edge is traversed consecutively in opposite directions.

Definition 39. A non-backtracking Eulerian tour traverses each edge twice in opposite directions

where backtracking is allowed if and only if the tour encounters a vertex of degree 1.

The following Theorem is due to Henderson [3].

Theorem 40. If λ and ρ are permutations of X, where ρ(x) = λ(x−1) for all x, then ρ is cyclic if

and only if the GP graph for λ has a non-backtracking Eulerian tour.
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(4)

+1+2

+5+4

(1,3,2)

(5)

+3

Figure 9. The GP graph for CM (Z6, (4, 1, 5, 3, 2))

(4)

(1,3,2)

(5)

1st 2nd

3rd

4th

5th

Start
End

Figure 10. Figure 9’s non-backtracking Eulerian tour

In observing Figure 9, notice that each edge’s sum is congruent to 0 modulo 6 with the

exception of the edge which just contains 3. This is because 3 is its own inverse under Z6, so this

edge can be interpreted as a +3 going in both directions. When ρ is not a cycle, a Cayley map is not

produced, so Theorem 40 is essential to finding λ’s that actually create Cayley maps. The reason

why Theorem 40 is true is because ρ is built by following the non-backtracking Eulerian path, which

then corresponds to the desired λ. For example, ρ can be found by following the non-backtracking

Eulerian tour demonstrated in Figure 10. The 1st edge traversed in Figure 10 corresponds to the

directed edge +4 in Figure 9. The 2nd edge traversed corresponds to +1, and so on. This tour gives

the order of ρ, which is (4, 1, 5, 3, 2) in this case. Since the path is non-backtracking, we know that

ρ will be a cycle because it will close where the tour began after traversing every other element in

X. Now, to calculate λ, according to Definition 17, λ(4) = ρ(4−1) = ρ(2) = 4. Hence, (4) is a factor

of λ. Next, λ(5) = ρ(5−1) = ρ(1) = 5, so (5) is also a factor of λ. Lastly, λ(1) = ρ(1−1) = ρ(5) = 3,

λ(3) = ρ(3−1) = ρ(3) = 2, and λ(2) = ρ(2−1) = ρ(4) = 1. Therefore, our last factor of λ is (132).

Thus, for CM (Z6, (4, 1, 5, 3, 2)), λ = (4)(5)(132). Using Theorem 40, Cayley map embeddings for

K18 and K30 that embed them on their Cayley genus were discovered.
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+(1,1)

+(1,4)

+(0,3)

+(2,2)

+(2,5)

+(1,2)

+(2,4) +(1,5)

+(2,1)

+(0,4)+(0,2)

+(0,5) +(0,1)
+(1,3)

+(2,3)+(1,0)

+(2,0)

((1,2)) ((2,1))

((1,5),(0,4),(2,3))((2,4),(0,2),(1,0))

((2,0),(0,5),(1,1))

((2,5),(1,4),(0,3))

((1,3),(0,1),(2,2))

Figure 11. The GP graph for CM (Z3 × Z6, ((0, 2), (2, 3), (0, 1), (1, 1), (1, 4),
(1, 3), (1, 5), (2, 1), (0, 4), (1, 0), (0, 5), (2, 2), (0, 3), (2, 5), (2, 0), (2, 4), (1, 2)))

+26

+11

+15

+19

+4

+16

+14 +1

+29

+8+22

+28 +2
+9

+21+24

+6

+10

+20 +25

+5

+23+7

+17 +13
+18

+12+3

+27

(25,23,12)

(18,13,29)

(1,8,21)

(9,2,19)

(4,11,15)

(6,28,26)

(14,22,24)

(27,17,16)

(20,7,3)

(10) (5)

Figure 12. The GP graph for CM (Z30, (10, 7, 25, 5, 12, 13, 16, 22, 21, 2,
26, 15, 11, 9, 1, 18, 23, 3, 17, 29, 8, 24, 28, 19, 4, 6, 14, 27, 20))
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Figure 11’s and Figure 12’s non-backtracking Eulerian tours can be found by following the

directions outlined in their respective ρ’s. Figures 11 and 12 combined with Theorem 36 prove that

γc(K18) = γ(K18) + 1 = 19 and γc(K30) = γ(K30) + 2 = 61. From Schleinblum, we also know that

γc(K6) = γ(K6) [6]. The calculated Cayley genera for these complete graphs provide evidence for

the subsequent conjecture.

Conjecture 41. If n = 12k + 6 for some k ∈ N0, then γc(Kn) = γ(Kn) + k.

The goal is to use GP graphs to inductively prove Conjecture 41. In regards to some obser-

vations about this class, one can see from Figures 9 - 12 that a ladder-type structure is starting

to form. In each iteration, 4 vertices (or 2 rings) are being added to the ladder. In Hendrick-

son’s paper, she proves that this type of transformation does not stop the graph from having a

non-backtracking Eulerian tour [3]. This means that we can continuously increase the number of

vertices by 4 whilst still having ρ be a cycle. Knowing this is useful in possibly being able to induc-

tively prove Conjecture 41. In order to prove that the structure of a GP graph holds inductively,

there are 4 attributes that need to be preserved. Namely,

(1) the uniqueness of each element,

(2) inverse adjacency between vertices,

(3) the desired order of each factor of λ, and

(4) the ability to form a non-backtracking Eulerian tour.

In regard to some strategies that can be used to possibly inductively construct GP graphs

for the 6 (mod 12) class, it is commonly known that if n = a · b and a and b are relatively

prime, then Zn
∼= Za × Zb. This means that the group Z6 × Z5 can be used to embed K30 onto

a surface of its Cayley genus according to Figure 12. Also, we know from computer calculations

that γ⟲c (K18) ̸= γ(K18). Therefore, when trying to inductively create GP graphs for the class

n ≡ 6 (mod 12), we will exclusively be working with the group Z6×Z2k+1 such that k ∈ N in order

to optimally embed K12k+6. The way this problem was attacked was to split up Z6 and Z2k+1 into

their own separate GP graphs, and to try to prove that GP graphs can be constructed for all k ∈ N

for those two graphs separately. A structure for Z6 that can be used inductively has already been

found and is shown in the Figure below.
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Figure 13. Reiterable structure for Z6

As can be seen in Figure 13, there are actually 12 vertices being added to the graph per each

iteration for a total of 36 elements. All of the triples in the structure add up to 0 modulo 6 and all

vertices are adjacent to each other’s inverses in Z6. This ladder can be continuously reconnected

to itself to produce a valid GP graph in the Z6 portion with each iteration. If the same type

of structure can be created for Z2k+1, and it can be proven that combining these two reiterable

structures preserves uniqueness, then it would prove Conjecture 41. However, it is much harder

to find a reiterable structure under Z2k+1 that preserves the desired order of each factor of λ and

inverse adjacency since the group modulus is varying as k increases. With Z6, all the elements in

the structure and before can stay the same since the modulus is constant. On the other hand, with

a varying group modulus, all of the elements within the structure and all the elements before it

need to be mapped to an entirely different element in order to satisfy both the element’s uniqueness

and having the sum of each λi under the modulus still be of order 1. A mapping that can create

such a reiterable structure has not yet been found.
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8. Finding the Cayley Genus of Complete Graphs With Order Congruent to 0

Modulo 12 Using GP graphs

To start off with this class, we are going to try to calculate γc(K12). According to Table 1,

Fγc(n) =
n

3
(n − 1). Therefore, every element in λ needs to be maximum face-generating in order

to produce an optimal embedding. Hence, for all i ∈ N, either |λi| = 3 and mult(λi) = 1 or

|λi| = 1 and mult(λi) = 3. Also, |λ| = 11. Ergo, there needs to be at least 2 λi’s with length 1

and multiplicity 3. If such was not the case, λ would not be able to be split up into permutations

of length 3 and multiplicity 1 since the number of elements left to be included in λ would not be

divisible by 3.

Now that we have a better understanding of the structure of the GP graph, we need to figure

out which group would work in formulating a GP graph to produce our ρ and λ needed to embed

K12 onto a surface of its genus. It is commonly known in group theory that there are five groups

that are isomorphic to all other groups of order 12. That is, any group of order 12 is structurally

equivalent to exactly one group in the subsequent table.

Group Order 2 Order 3 Order 4 Order 6 Order 12
Z12 1 2 2 2 4

Z2
2 × Z3 3 2 0 6 0
D6 7 2 0 2 0

Z3 ⋊ Z4 1 2 6 2 0
A4 3 8 0 0 0

Table 4. Structural properties of groups of order 12

At first glance, it seems as though any group listed in Table 4 could work in embedding K12

onto a surface of its genus since every group listed has at least 2 elements of order 3. In actuality,

for the first four groups in Table 4, the two elements of order 3 are inverses of each other under the

group operation. For example, Z12’s two elements of order 3 are 4 and 8, and 4+12 8 = 0. The two

elements of order 3 under Z2
2 × Z3 are (0, 0, 1) and (0, 0, 2). Again, (0, 0, 1) + (0, 0, 2) = (0, 0, 0).

The following Theorem proves that λ does not create a Cayley map if there are two factors of λ

that are both of length 1 that hold each other’s inverses.

Theorem 42. If there exists some i, j ∈ N such that λi = (x) and λj = (x−1), where λi and λj

are factors of λ, then λ does not produce a Cayley map.
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Proof. According to Definition 17, ρ(x) = λ(x−1) = x−1 and ρ(x−1) = λ(x) = x. Hence, (x, x−1)

would be a factor of ρ. Therefore, ρ would not be a cycle, and a Cayley map would not be

produced. □

Now that we know that the first four groups in Table 4 cannot embed K12 onto its Cayley

genus, the only group left that could work is the even permutation group A4. Before we can define

A4, we must define S4, which is the permutation group A4 is derived from.

Definition 43. The symmetric group of degree n (or the full symmetric group), denoted Sn, is the

set of all permutations of the finite set A = {1, 2, . . . , n}.

In regard to calculating the order of Sn, notice that every permutation is a bijection from A

to A. Therefore, for the first element of A, 1, there are n options as to where 1 can map to. There

are n − 1 elements that 2 can map to since 2 cannot map to the element that 1 maps to without

contradicting the permutations bijectivity. For the same reason, 3 can only map to n− 2 elements,

and so on. Hence, |Sn| = n!. Typically, multiplication of permutations is performed from right to

left, and we will do the same moving forward. We will look at S4, which is of order 24.

S4 = {e, (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23), (123), (124), (132),

(134), (142), (143), (234), (243), (1234), (1243), (1324), (1342), (1423), (1432)}

To demonstrate S4’s group operation, let us multiply (134) and (13)(24) together. This gives us

(134)(13)(24). It is important to specify the order in which we are multiplying permutations since

Sn is non-Abelian (not commutative) for all n ≥ 3. We will first check to see where 1 maps to.

Looking at our combined permutation and moving from right to left, 1 is first mapped to 3. The

next time 3 shows up when moving left has it so 3 gets mapped to 4. Hence, 1 gets mapped to 4.

To assess where 4 gets mapped to, 4 gets sent to 2, and there are no more 2’s in the permutation

when moving from right to left. Ergo, 4 simply gets mapped to 2. 2 gets mapped to 4 which maps

to 1, so 2 gets mapped to 1, which closes off our first cycle (142). We do not actually need to

check where 3 gets mapped to as all the other elements of A = {1, 2, 3, 4} are accounted for, so we

know that 3 gets mapped to itself. We will do so anyways to prove that such is the case. 3 gets

mapped to 1, and in the left most two-cycle where 1 shows up, 1 gets mapped to 3. Therefore, 3

gets mapped to 3. This would correspond to the mapping (3), but cycles that map elements back

to themselves are not included when writing out the full permutation mapping. It may be useful
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for the reader to try multiplying some of these permutations together to convince themselves that

S4 is closed under its group operation.

Definition 44. A permutation is even if it can be written as the product of an even number of

two-cycles.

Every permutation in Sn, n ≥ 2 can be written as a product of two-cycles. If α = (a1a2 . . . am)

is a cycle of length m, then its two-cycle form is α = (a1am)(a1am−1) · · · (a1a2). As outlined in

Definition 44, a permutation is even if it can be written as an even number of two-cycles. Similarily,

a permutation is odd if it can be written as an odd number of two-cycles. The set of even and

odd permutations partition the set Sn so that half of Sn’s elements are even and the other half are

odd when n ≥ 2. The even permutations contained within Sn form a subgroup, denoted An, where

|An| =
|Sn|
2

=
n!

2
when n ≥ 2. Notice that the set of odd permutations does not form a subgroup

under Sn due to the absence of an identity element. Since |S4| = 24, |A4| = 12. Using A4, a GP

graph was found that generates a ρ that optimally embeds K12 onto a surface of its genus.

A4 = {e, (12)(34), (13)(24), (14)(23), (123), (124), (132), (134), (142), (143), (234), (243)}

((12)(34),(132),(134))

(142)(143)

(124)

((13)(24),(143),(142))

(13)(24)

(12)(34) (14)(23)

(132)

(123)

((123))

((124),(14)(23),(243))
(243)

(234)

((234))

(134)

Figure 14. The GP graph for
CM (A4, ((123), (12)(34), (134), (13)(24), (142), (14)(23), (243), (234), (124), (143), (132)))
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One can notice that it is easy to find Figure 14’s non-backtracking Eulerian tour, so it would

be convenient to find more GP graphs that mimic this structure of having every triple contain an

element of order 2 from X. Let us analyze what the GP graph would look like for Z2×A4. Z2×A4

contains 7 elements of order 2, 8 elements of order 3, and 8 elements of order 6. Hence, we have

plenty of elements of order 3 to put into our two λi’s of length 1. Also, The number of triples the

GP graph for K24 will have is
24− 3

3
= 7, which is perfect since there are 7 elements of order 2

that can be put into each of the 7 triples. Using Z2 ×A4, the GP graph that creates a Cayley map

that embeds K24 onto a surface of its genus was found.

(((1,(12)(34)),(0,(132)),(1,(134)))

(((0,(124)),(0,(14)(23)),(0,(243)))

(((1,(124)),(0,(13)(24)),(1,(123)))(((1,(13)(24)),(1,(143)),(0,(142)))

(((1,(132)),(1,(14)(23)),(0,(134)))

(((0,(234)),(1,e),(1,(243)))

(((0,(12)(34)),(1,(234)),(1,(142)))

(((0,(123))) (((0,(143)))

((0,(143))

((0,(134))

((1,(14)(23))

((1,(132))

((1,(123))

((0,(13)(24))

((1,(124))

((1,(142))

((0,(12)(34))
((1,(234))

((1,(243))

((1,e))

((0,(234))

((0,(243))
((0,(14)(23))

((0,(124))

((0,(142))

((1,(13)(24))

((1,(143))

((1,(134))

((1,(12)(34))

((0,(132))

((0,(123))

Figure 15. The GP graph for CM (Z2 ×
A4, ((0, (123)), (1, (12)(34)), (1, (134)), (1, (13)(24)), (0, (142)), (0, (14)(23)), (0, (243)),
(1, e), (1, (243)), (1, (142)), (1, (123)), (0, (134)), (0, (143)), (1, (132)), (1, (124)), (1, (234)),

(0, (234)), (0, (124)), (1, (143)), (0, (132))))
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Figures 14 and 15 both respectively prove that γc(K12) = γ(K12) and γc(K24) = γ(K24).

If you cut Figure 15 down the middle, the A4 piece of the left side of the GP graph was made

from Figure 14. This is promising since it provides some evidence that an inductive proof to solve

for the Cayley genus for a family of complete graphs may be possible by building these graphs

upon one another. The previously mentioned sought after GP graph structure that has a simple

Eulerian tour occurs when deploying the group Zk
2 × A4 to embed K2k·12. One can notice some

interesting reflections about Figure 15’s midline. Being able to reiterate these reflections to preserve

uniqueness, inverse adjacency, and the order of each factor of λ will prove that γc(Kn) = γ(Kn)

when n = 2k · 12. Figures 14 and 15 provide evidence towards the following conjecture.

Conjecture 45. If n = 12k for some k ∈ N, then γc(Kn) = γ(Kn).

9. Conclusion

This paper delves into the effectiveness of Cayley maps in embedding complete graphs of an

even order. Specifically, a conjecture has been established for the Cayley genus of complete graphs

with an order congruent to 6 modulo 12 and with an order congruent to 0 modulo 12, along with

some speculative strategies to possibly proving them. This thesis also establishes the 12 classes of

Cayley maps and proves the face formulas for each of these classes in a form that is important in

the context of Cayley map embedding. Through our analysis, we note that Cayley maps cannot

embed complete graphs optimally for 8 out of the 12 classes given the graph’s order is greater than

6. That being said, it is still unknown as to how much worse than optimal Cayley maps are at

embedding these 8 classes outside of the 6 modulo 12 class. For future research, we recommend

studying one of the 12 classes, most preferrably in the 4 modulo 12 class. We know cyclic groups

cannot embed this class of graphs optimally, so it would be eye-opening for more research to be

done on this class. We hypothesize that the group Z2×Z6k+2 would embed K12k+4 optimally since

it does so for k = 0, 1 [6] [3].
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