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Abstract 

Stuttering is a speech impediment that often requires speech therapy to curb the symptoms. In 

speech therapy, people who stutter (PWS) learn techniques that they can use to improve their 

fluency. PWS often practice their techniques extensively in order to maintain fluent speech. 

Many listen to audio recordings to practice where a single word or sentence is played on the 

recording and then there is a pause, giving the user a chance to say the word(s) to practice. This 

style of practice is not customizable and is repetitive since the contents do not change. Thus, we 

have developed an application for iPhone that uses a text-to-speech API to read single words and 

sentences to PWS, so that they can practice their techniques. Each practice mode is customizable 

in that the user can choose to practice certain sounds that they struggle with, and the app will 

respond by choosing words that start with the desired sound or generate sentences that contain 

several words that start with the desired sound. We generate sentences in two ways: an AI 

approach using recurrent neural networks and a “fill-in-the-blank” approach. When generating 

sentences, the goal is that the sentences are relatively short and contain simple words, so that the 

user does not struggle to repeat the word or sentence.  
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1 Introduction 

 Speech is a motor skill that seems simple upon first glance. However, speech is 

incredibly complex, and it requires that one’s brain, lungs, diaphragm, vocal cords, and 

articulators all work in unison to produce fluent speech. Additionally, it is estimated that the 

average adult has around 15,000 words in their active vocabulary (Webster & Wohlberg, 1992). 

To put this in perspective, 15,000 words equates to 15,000 unique muscle movement patterns 

that we must be able to perform without difficulty to produce fluent speech. Thus, it is not 

surprising that this process can sometimes malfunction. This malfunction is what results in 

speech impediments. The speech impediment that we will be focusing on in this paper is 

stuttering. 

 Stuttering is a speech impediment that has no cure. Instead, people have been trying to 

ease the symptoms with therapy for centuries. Through therapy, people who stutter (PWS) learn 

techniques that they can use to make their speech more fluent. After the invention of computers, 

more therapy options started to become available. There are devices that provide feedback to the 

user and there are others that are meant solely for practice. Today, there are several different 

applications available on the smartphones that offer stuttering therapy. However, there are no 

apps that allow PWS who have already gone through speech therapy to practice their techniques. 

For PWS, practice involves articulating words and sentences while using techniques they 

learned in therapy. PWS typically need to practice every day, but it can be hard to do so for a lot 

of people. Many PWS listen to audio tapes to practice. In this style of practice, the user repeats a 

word or sentence after the speaker on the recording says it. Audio recordings are incredibly 

useful because PWS can practice their speech in a multitude of situations such as driving or 

doing chores. There are three problems with this method that could be improved. First, in this 

method, the recordings become repetitive since the contents of the recording cannot change. 

Second, most people strongly dislike the sound of their own voice and are not be willing to 

record practice tapes for themselves. Lastly, audio recordings offer no customization options 

since the contents of the recording do not change. This is a problem because PWS can often 

struggle with particular sounds. In the audio recording method of practice, it is difficult to 

practice specific types of sounds. 

We have designed an application for iPhone that fills in this gap and fixes these three 

major problems. The app works by using the Google Cloud Text-to-Speech API to articulate 
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words for the user. After each utterance, there is a pause to give the user a chance to say the 

words for themselves and practice their techniques. Since PWS have different techniques for 

words and sentences, the app allows the user to practice single words or sentences. The app also 

offers many customization options that include options to practice by sound type or sound class.1 

In the case of practicing single words, the app will only articulate words that align with the user’s 

customization choices. Regarding practicing sentences, the app will randomly generate sentences 

using two different methods. One is an AI approach using recurrent neural networks and the 

other is what we call the “fill-in-the-blank” approach. Both approaches allow the sentences to be 

customizable. It is important that the sentences are not too long and do not contain extremely 

long words to make the sentences easier for the user to repeat. We believe that our app fixes the 

three problems of traditional audio recordings since 

• words and sentences are randomly generated and thus are not repetitive 

• the app relies on a text-to-speech API and not one’s own voice 

• the app offers customization options for sound type and sound class. 

However, our application, in its current state, is a proof of concept. The app currently uses two 

different methods for generating text. In the production version, the app will only utilize one of 

these methods. Also, the app has only been tested on an iPhone XS Max and is not optimized for 

other screen sizes. The production version will be optimized to run on all iPhone screen sizes. 

 

2 Stuttering and Speech Therapy 

2.1 Overview of Stuttering 

 Stuttering is speech characterized by hesitations, repetitions, harsh sounds, elongated 

sounds, and a disruption of the natural rhythm or flow of speech. It is estimated that around 1% 

of the population stutters (Van Borsel, Maes, & Foulon, 2001). The disorder affects males much 

more than females with a ratio of about 3:1 (Yairi & Ambrose, 2013). Also, the disorder tends to 

arise during childhood with most people growing out of it (Radonjić et al., 2020). Not everyone 

shows the same degree of severity. In fact, many people who stutter only have trouble with 

particular sounds. These sounds often belong to the same class of sounds. 

 There are four different sound classes, which are shown in Table 1. This classification 

system is derived from the Precision Fluency Shaping Program developed by Webster & 

 
1 We will define this terminology in the next section. 
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Wohlberg (1992). It is apparent that there are some letters that are missing from the table. For 

example, Q and X are not present. This is because these letters produce sounds that are found 

elsewhere on the table. The Q letter produces the “kw” sound in English, and thus is grouped 

into the plosive sound K/C. Likewise, in English, words beginning with the sound X produce a Z 

sound are grouped with Z. Another quirk with this classification system is that a word of a 

certain sound type may not start with that same letter. For example, words beginning in PH 

belong to the F sound type.2 All these exceptions are outlined in more detail in Table 2. Also, in 

stuttering, we are primarily concerned with the first sound of a word. Going forward, we will 

only be considering the initial sound of a word when assigning a word to a particular sound and 

sound class. 

 

 

PWS have a variety of techniques that they may use to achieve fluent speech. Some of 

these techniques are specific to certain types of sounds and others are specific to word chains. 

Thus, PWS must practice single words and sentences. Our application is designed to 

accommodate both needs. There are options to practice sentences and single words, and both 

modes offer customization options since PWS often struggle with certain sound types or sound 

classes. Our application is one of many different forms of computer-aided speech therapy, which 

are described in further detail in the next subsection. 

 
2 The terms sound type and individual sound are used interchangeably. 

Table 1 

The Four Sound Classes of Speech 

 

Sound Class Sounds 

1. Vowels A, E, I, O, U 

2. Voiced Continuants J, L, M, N, R, V, W, Y, Z, voiced TH 

3. Fricatives F, S, H, SH, CH, unvoiced TH 

4. Plosives B, P, D, T, G, K/C 

Note. This table lists the sounds that are associated with each sound class in the English language. 
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2.2 Computer-aided Speech Therapy 

  Since the advent of computers and modern technology, the area of speech therapy has 

seen significant advances. Speech language pathologists began to use computer enabled devices 

to aid in speech therapy. Since computers have continued to become more and more prevalent, 

this area of speech therapy has continued to grow as well. Today, it is more prevalent than ever 

Table 2 

Rules for the Sound Types 

 

Starting Letter(s) Exceptions 

C 

- CE, CI, CY words belong to sound type S 

- CZ words belong to sound type Z 

- most CH words belong to sound type CH 

- all remaining words belong to sound type K/C 

G - GE and GY belong to sound type J 

K - KN words belong to sound type N 

P 

- PH words belong to sound type F 

- PS words belong to sound type S 

- PT words belong to sound type T 

Q - all words belong to sound type K/C 

S - SH words belong to sound type SH 

T 
- TH words belong to unvoiced TH or voiced TH  

- TZ words belong to sound type Z 

W 
- WH words belong to sound type H 

- WR words belong to sound type R 

X - all words belong to sound type Z 

Note. This table lists all the words beginning with a letter that does not match the letter of its sound type in the English 

language. 
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since so many of us carry a smartphone everywhere we go. There are many different apps 

available on the App Store and the Google Play store that offer speech therapy resources. Here 

we provide an overview of computer-aided speech therapy for stuttering. 

 The Precision Fluency Shaping Program by Webster & Wohlberg (1992) uses a device 

called a voice monitor to aid in therapy for stuttering. The voice monitor is used to analyze the 

initial vibrations of the vocal folds when the user speaks. The device will alert the user if their 

onset was correct or incorrect. This device is one that provides meaningful feedback to the user, 

which the user can use to adjust their speech patterns. However, there are some devices that do 

not provide any analysis and are meant solely for practice or to improve fluency. The voice 

monitor is not meant for everyday use. Instead, it is supposed to be used for intensive speech 

therapy and never used again, ideally. 

 Gordon W. Blood (1995) at Pennsylvania State University conducted a study using a 

computer-aided device for speech therapy. Four adults participated in the study and all saw a 

significant reduction in the number of stuttered syllables. All participants used a Computer-

Aided Fluency Establishment Trainer (CAFET). The CAFET “uses a microcomputer, circuit 

board, respiratory sensor, and a clip-type microphone” (Blood, 1995, p. 166). The respiratory 

sensor is used to measure airflow and the microphone is used to record the user’s speech. The 

results are shown on a monitor. In the study, Blood was trying to assess and improve 

diaphragmatic breathing, continuous airflow, pre-voice exhalation, easy onset, initial 

prolongation, continuous phonation, phrasing, and monitored speech. He had the patients 

practice one target at a time and would not move on to the next one until the current one was 

fully mastered. The CAFET was used to provide feedback to the patients. For example, to 

practice diaphragmatic breathing, the CAFET displayed a breathing curve using the respiratory 

sensor. Using this information, the patients were able to practice breathing in a way that would 

produce a favorable curve on the monitor. 

 During the next decade, researchers developed more types of computer-aided therapy 

devices. Ooi Chia Ai and J. Yunus (2006) outline the four types of computer-based stuttering 

therapy devices. These devices are 

• devices that alter auditory feedback (AAF) 

• devices that provide feedback on physiological status or production patterns 

• devices that alter speech motor production patterns 
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• pacing/metronome devices. 

The most notable AAF device is the delayed auditory feedback (DAF) device. This device 

repeats what the user says with a 0.25 second delay. The other types of AAF are masked auditory 

feedback, frequency altered feedback (FAF), and combined feedback. The devices that provide 

feedback on physiological status or production patterns, as the name implies, “provide immediate 

feedback of voice onset patterns, duration, and amplitude/loudness” (Ai & Yunus, 2006, p. 208). 

Clinicians can use these devices to show patients what correct speech patterns look like on the 

device and then leave them to practice on their own. Some examples of these devices are the 

FluencyNet and the Digital Speech Aid. The Fluency Master is an example of a device that alters 

speech motor production patterns. The device resembles a hearing aid, and it functions by 

altering the way that the user hears their own speech. It allows them to hear their natural vocal 

tone because normally, when we speak, the voice that we hear is different than the voice that 

others hear. This happens because vibrations from the vocal folds must travel through bone, 

cartilage, and soft tissue before reaching the ear. Being able to hear one’s true voice makes it 

easier to control stuttering. The last device, the metronome, is straightforward. The device plays 

an audible click in a rhythmic fashion since speaking to a rhythm has been shown to improve 

stuttering. Ai and Yunus go on to elaborate on the current state of computer-based therapy in 

Malaysia. 

 Unger, Glück, and Cholewa (2012) provide a deeper analysis on AAF devices. They 

confirm that a DAF device plays back the user’s voice with a slight delay. This delay is 

adjustable. The preferred delay used to be 250 ms. However, researchers have shown that the 

delay can be reduced to 50 ms with similar a similar reduction in the number of stuttered 

syllables. The authors also posit that a FAF devices plays back the speaker’s voice at a different 

pitch. The research on whether this type of AAF device improves stuttering has been 

inconclusive so far. This specific study used a device that used DAF and FAF.3 The researchers 

found that there was a statistically significant reduction in the number of stuttered syllables when 

using the device. 

 

 

 

 
3 According to Ooi Chia Ai and J. Yunus, this device would be considered a combined feedback device. 
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3 Methods of Text Generation 

3.1 Markov Text Generation 

 There are a few different ways to generate text in a software environment. One of the 

simpler ones and the first one we will be examining is utilizing Markov chains. A Markov chain 

is a stochastic process that consists of a finite set of states. Each state has a constant conditional 

probability to transition to a different state; it is possible for that probability to be zero. An 

important feature of Markov chains is the memoryless property, meaning that the transition 

probability depends just on the previous state. Formally, a discrete-time stochastic process is a 

Markov chain if, for t = 0, 1, 2, . . . and all states, 

P(Xt+1=it+1  | Xt=it, Xt-1=it-1, . . . , X1=i , X0=i0)=P(Xt+1=it+1 | Xt=it ) 

(Winston, 2004, p. 181). To expand on this definition, we will introduce the idea of the discrete-

time stochastic process. If we observe a system where Xt  represents a characteristic of the system 

at time t where t = 0, 1, 2, . . . , then a discrete-time stochastic process would be “a description of 

the relation between the random variables X0, X1, X2, . . .” (Winston, 2004, p. 180). 

To generate text with Markov chains we must establish these finite states and transitional 

probabilities. We can make a choice between generation via characters or words. This will 

determine our states. If we choose character generation, we will have states that represent the last 

n characters while in word generation our states are the last n words. For each state created, we 

can determine the probability for the next word by studying the source material. This gives us a 

probability distribution that can then be used to generate new text. 

One of the first people to introduce text generation with a stochastic process like Markov 

chains was the American mathematician, Dr. Claude Shannon (1948), in his paper “A 

Mathematical Theory of Communication.” Shannon argues that every letter in the English 

language can be assigned a probability depending on the frequency that the letter appears in the 

seed text (Shannon, 1948). The seed text represents the material that we are using as the base for 

generating new text. This means that the seed text must be sufficient in length to provide relevant 

probabilities. Shannon introduces four orders of natural language approximation, which are 

shown in Table 3 (Shannon, 1948, p. 7) along with his results. From the results we can clearly 

see how the generated text improves by increasing the order of approximation. We can also 

notice the word level generation and how it improves when transition probabilities are included. 
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The increased performance of word level generation in Markov chains translates into AI text 

generation, which we will discuss further. 

 

Table 3 

Orders of Approximation and the Results 

 

Order of Approximation Results 

Zero-order approximation: symbols are 

independent and equiprobable 

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ 

FFJEYVKCQSGHYD 

QPAAMKBZAACIBZLHJQD 

First-order approximation: symbols are 

independent but frequencies of English text 

are included 

OCRO HLI RGWR NMIELWIS EU LL 

NBNESEBYA TH EEI ALHENHTTPA 

OOBTTVA 

NAH BRL 

Second-order approximation: digram, 

transition probabilities p(i, j) = p(i)pi( j), 

structure as in English 

ON IE ANTSOUTINYS ARE T INCTORE 

ST BE S DEAMY ACHIN D ILONASIVE 

TUCOOWE 

AT TEASONARE FUSO TIZIN ANDY 

TOBE SEACE CTISBE. 

Third-order approximation: trigram, transition 

probabilities p(i, j, k), structure as in English 

IN NO IST LAT WHEY CRATICT FROURE 

BIRS GROCID PONDENOME OF 

DEMONSTURES 

OF THE REPTAGIN IS REGOACTIONA 

OF CRE. 

First-order word approximation: words are 

chosen independently but with their 

appropriate frequencies 

REPRESENTING AND SPEEDILY IS AN 

GOOD APT OR COME CAN DIFFERENT 

NATURAL 

HERE HE THE A IN CAME THE TOOF TO 

EXPERT GRAY COME TO FURNISHES 

THE LINE MESSAGE HAD BE THESE. 

Second-order word approximation: the word 

transition probabilities are correct but no 

further structure 

is included. 

THE HEAD AND IN FRONTAL ATTACK 

ON AN ENGLISH WRITER THAT THE 

CHARACTER 

OF THIS POINT IS THEREFORE 

ANOTHER METHOD FOR THE LETTERS 

THAT 

THE TIME OF WHO EVER TOLD THE 

PROBLEM FOR AN UNEXPECTED. 

Note. This table lists the categorization of orders of approximation introduced by Claude Shannon. It also presents the example 

results from Shannon’s paper for each approximation category. 
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3.2 “Fill-in-the-blank” Style 

 The fill-in-the-blank style is based on Mad Libs, which is a word game where the player 

fills in blanks in sentences with a random word. However, each blank is supposed to be filled in 

with a certain type of word. These words can be nouns, verbs, numbers, colors, places, etc. After 

the player fills in all the blanks, they read the sentences and the result is normally very comical. 

This concept can be used to make a simple text generation model. We can create template 

sentences with blank words where each blank is represented by a symbol that corresponds to a 

certain word type. For example, the template sentence “The 1 is a little 3” has two placeholders, 

1 and 3. 1 is a placeholder for a noun and 3 is a placeholder for an adjective.4 Template sentences 

can be fed into a program that fills in each placeholder with a random word from a list of words 

that match the placeholder type. Hossain et al. (2017) use this concept to generate sentences as 

well. However, instead of using a completely random word to fill in each placeholder, they 

choose a word that is likely to be funny given the context of the sentence. 

 

3.3 Recurrent Neural Networks 

 To implement artificial intelligence in text generation, we will use a type of neural 

network called recurrent neural networks (RNN). RNN is a type of neural network that is used to 

model sequential data. RNNs consist of three layers: input, hidden, and output. In the hidden 

layer we can find a self-loop that is used to access outputs from previous states, or its “memory,” 

to generate new output and predictions. This is particularly important for text generation since 

we can use multiple sequential data points, these being characters or words, to predict the next 

data point. Ilya Sutskever introduces RNNs as follows: 

 

Given a sequence of input vectors (x1, . . ., xT), the RNN computes a sequence of hidden 

states (h1, . . ., hT) and a sequence of outputs (o1, . . ., oT) by iterating the following 

equations for t = 1 to T:  

ht = tanh(Whxxt +Whhht-1 + bh) 

ot = Wohht + bo 

In the equations, Whx is the input-to-hidden weight matrix, Whh is the hidden-to-hidden 

(or recurrent) weight matrix, Woh is the hidden-to-output weight matrix, and the vectors 

 
4 This is according to Table 4 found in section 4.3. 
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bh and bo are the biases. The undefined expression Whhht-1 at time t = 1 is replaced with a 

special initial bias vector, hinit, and the tanh nonlinearity is applied coordinate-wise. 

(Sutskever et al., 2011, p. 2) 

 

Their paper demonstrates the power of RNNs when they are trained with the new Hessian-Free 

optimizer by applying them to character-level language modeling tasks. RNN based models are 

showing excellent performance and present the future of AI text generation. Further work on 

RNNs and the performance overview of these models can be found in papers by Lu (2018) and 

Mikolov (2010). 

Alex Graves (2014) introduces how Long Short-term Memory (LSTM) recurrent neural 

networks can be used for generation of long-range structured sentences by only predicting one 

data point at a time. LSTM RNNs use purpose-built memory cells to store information; hence, 

they are better at storing and accessing data. He defines RNNs as dynamic models that “can be 

trained for sequence generation by processing real data sequences one step at a time and 

predicting what comes next” (Graves, 2014, p. 1). Graves further explains that RNNs will 

iteratively sample the networks’ output distribution and then use that sample for input in the next 

step. This allows the network to generate novel text sequences. Additionally, Graves presents the 

challenges that come from generating with regular RNNs and how LSTM RNNs can be used to 

obtain better results. However, some of the most significant work on character-level text 

generation via LSTM RNNs was done by Andrej Karpathy. He created a model, char-rnn, that 

takes a large source text and uses it to determine the next character depending on the previous 

sequence of characters (Karpathy 2015). A graphical representation of this model is shown in 

Figure 1 (Karpathy 2015). 

The model we will be using in our application, textgenrnn, was created by Max Woolf 

(2020), and it is a direct product of Karpathy’s work on char-rnn. Textgenrnn is a Python 

package that utilizes the TensorFlow and Keras Python frameworks and makes significant 

improvements to char-rnn. These improvements include attention-weighted averaging, decaying 

learning rate, and character embeddings (Woolf 2018). The default texgenrnn model still uses 

character-level generation, and its implementation is displayed in Figure 2 (Wolf 2018). 

However, in our model, we will be utilizing word-level training. More information on this 

method will be provided in the next section. 
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Figure 1 

Example of Char-rnn Implementation 

 

Note. The figure represents a forward pass through the char-rnn model when the model is provided with characters “hell” as 

input. Each character is assigned a vector using 1-of-k encoding (i.e., all zero except for one at the index of the character in 

the vocabulary). Then in the hidden layer, the vectors are fed into the RNN with the step function (the code is available in the 

source material). The step function then generates the output vector, with one dimension per character, which represents the 

confidence that the RNN currently assigns to each character coming next in the sequence. The process is then repeated until 

the confidence values converge to values that will predict the correct character every time.  
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4 Description of the System 

4.1 Overview of the System 

We developed the Speech Practice application using the Swift programming language 

through Apple’s XCode integrated development environment (IDE) with the intention of 

deploying the app on iPhone. The application has two main features: practicing single words and 

practicing sentences. When the app is launched, the user can choose the type of practice session 

that they want. The functional options on the home screen are: Practice Sentences and Practice 

Single Words shown in Figure 3. Tapping these icons will either lead to the sentences menu or 

Figure 2 

Overview of Textgenrnn Implementation 

 

Note. The default implementation will take input of up to 40 characters. It will then go through the embedding layer, followed by 

two LSTM layers. The next step takes it to the attention layer, where the most critical temporal features are weighted and 

averaged together. Finally, the model produces the output mapped to probabilities for up to 394 different characters. 
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the words menu. Both menus offer different customization options which we will discuss further 

in the following sections. 

 

All the different practice options allow the user to input their customizations and choose 

the number of words or sentences that they want to practice. When the user has entered 

everything, they can start a session. For every practice option, a word or sentence will be 

selected. Once the string of text is chosen, the string is converted into speech using the Google 

Cloud Text-to-Speech API. Once the iPhone articulates the text, there is a pause to allow the user 

to say the word back.5 The length of the pause depends on the type of practice session that the 

 
5 There is no analysis happening at this stage. The app is simply acting as a tool to help people practice their fluency. 

The app is there to provide random words and sentences that adhere to some rules specified by the user. 

Figure 3 

Speech Practice App Home Screen 

 

Note. This is the screen that first opens when the app loads. The user can tap on either Practice Sentences or Practice Single 

Words. Past Sessions and Settings are not completely functional yet. 
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user is in. Sentences have a longer pause since they take longer to say back while single words 

have a shorter pause. 

The user can customize a practice session based on the four different sound classes 

mentioned earlier. Each practice mode (sentences and single words) includes two main options: 

Practice by Sound Classes and Practice by Individual Sounds. In the former, the user can choose 

one or multiple sound classes to practice. In the latter, the user can choose individual sounds to 

practice. The implementation of these features for the two different modes is explained in further 

detail in the next subsections. 

 

4.2 Practice by Single Words 

 The Practice by Single Words mode has two options: Practice by Sound Classes and 

Practice by Individual Sounds. The user can select one of these two options after selecting 

Practice Single Words on the home page of the application. Both options rely on the same word 

database, which is derived from the Moby Project (Downey, 2016). We divided the master list 

into four smaller lists based on the sound class of the initial sound in each word. Then, we 

divided each sub-list into lists based on each specific initial sound rather than the sound class. 

This means that the app can easily find a word matching a specified initial sound or sound class. 

The app will choose a word at random from the list. 

After selecting Practice by Sound Classes, the user is brought to a screen where they can 

enter their customizations and start the session, shown in Figure 4. The user will be presented 

with four switches. When a switch is on, the words read to the user will have initial sounds 

pertaining to the chosen sound class. The user can select more than one sound class. For 

example, if the user chooses Vowels and Plosives, then the user will hear words with initial 

sounds A, E, I, O, U, B, P, D, T, G, and C/K. If all switches are on, then the user will get a 

completely random word meaning that the word could have any initial sound. A progress bar 

updates after each word is articulated. This gives the user an idea of where they are in the 

session. All practice options within the app have a progress bar. 
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When the user selects the Practice by Individual Sounds option, a screen similar to the 

screen found in the Practice by Sound Classes option will appear. This is also shown in Figure 4. 

Instead of four switches, there are four buttons that correspond to the four different sound 

classes. These buttons allow the user to select sounds that they want to practice. When a button is 

pressed, a selection menu will appear, all are shown in Figure 5. Each selection menu lists all the 

sounds that are in the corresponding sound class. The user can select and deselect sounds from 

multiple lists. Once the user has chosen all the sounds that they want to hear, they can choose the 

length of the session and start. The user will hear words that only have initial sounds matching 

the sounds that they chose. For example, if the user chose A from vowels, M and N from voiced 

Figure 4 

Practice by Sound Classes and Practice by Individual Sounds for Single Words 

  

Note. The left image is the screen for the Practice by Sound Classes option for words. The right image is the screen for the 

Practice by Individual Sounds option for words. 
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continuants, and S from fricatives, then words spoken in the session will have an initial sound of 

A, M, N, or S. 

 

4.3 Practice by Sentences 

 The Practice by Sentences mode has three options: Practice by Sound Classes, Practice 

by Individual Sounds, and Practice Random Sentences. The user interface for the first two 

options is virtually identical to those found in the Practice by Single Words mode except for the 

addition of the switch to toggle between the two different approaches for generating sentences. 

This is shown in Figure 6. However, the underlying code is very different since we are 

generating sentences instead of words. The third option, Practice Random Sentences, has a 

simple user interface since the purpose of this mode is just to produce random sentences without 

customization. This mode only contains a slider to adjust the length of the session, the start 

session button, a progress bar to show the user where they are in the practice session, and the 

toggle for switching between the fill-in-the-blank approach and the AI approach, which is also 

Figure 5 

The Four Selection Menus in the Practice by Individual Sounds Option 

    

Note. Each screen contains all the individual sounds for a specific sound class. The left screen contains class 1 sounds, the left middle 

screen contains class 2 sounds, the right middle screen contains class 3 sounds, and the right screen contains class 4 sounds. 
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displayed in Figure 6. First, we will give an overview of the fill-in-the-blank approach and then 

we will explain the AI approach. 

 

Fill-in-the-blank Approach 

The first way that we can generate sentences is by using the fill-in-the-blank approach. In 

order to use this approach, we must have template sentences and word lists of different word 

types. In our case, we have five different types of words: noun, verb, adjective, adverb, and name 

of a person (Fellbaum, 1998; Roche). Each template sentence has some predefined words and 

placeholders. There are five different placeholders that correspond to the five different types of 

words. These pairings are shown in Table 4. Each list of words is sorted by sound class and 

Figure 6 

Practice by Sound Classes, Practice by Individual Sounds, and Practice Random Sentences for Sentences 

   

Note.  The left image is the screen for the Practice by Sound Classes option for sentences. The middle image is the screen for the 

Practice by Individual Sounds option for sentences. The right image is the screen for the Practice Random Sentences option. 
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turned into smaller lists that are sorted by initial sound. This is very similar to the sorting method 

used in section 3.2. 

 

When the user starts a practice session, the application will pull a random sentence from 

the list of template sentences when it needs a sentence. The app checks each string in the 

sentences and determines if the string is a word or a placeholder. If the word is a placeholder, 

then it is replaced by the matching word type as shown in Table 4. After every string is checked, 

the sentence is rebuilt with the placeholders having been swapped out for actual words. The 

sentence is then read to the user and the process repeats itself. The manner in which the words 

are chosen varies between the three practice options within Practice by Sentences. 

Practice Random Sentences is the least complex out of the three since it does not involve 

any user customization. When a placeholder string is found, a random word is chosen from the 

master list of the corresponding word type. This means that the chosen word could have any type 

of initial sound and belong to any of the four sound classes. As a result, it is likely that the words 

added to the sentence will not be of the same initial sound type or class. This ensures that the 

sentences feel random to the user. 

In Practice by Sound Classes, the user specifies what sound class(es) they want to 

practice. This means that when a placeholder is changed out for a word, that word could be of 

any sound type from the chosen sound class(es). When a placeholder string is found, a random 

sound type is chosen, and then a word from the corresponding sound class is put into the 

Table 4 

The Five Placeholders for the Fill-in-the-blank Approach 

Placeholder Word Type 

1 Noun 

2 Verb 

3 Adjective 

4 Adverb 

5 Name of a Person 

Note. This table lists the placeholders for each word type. Each placeholder is a number between 1 and 5. When a sentence is 

constructed, each placeholder is filled in with the corresponding word type. For example, the “1” placeholder is always filled 

in with a noun. 
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sentence. This means that it is unlikely that all the new words will be of the same sound type. If 

the user chooses to practice multiple classes at once, then the sentence will contain words from 

any of the chosen classes. 

 In Practice by Individual Sounds, the user can specify the sounds that they want to have 

appear in the sentence. The selection screen is similar to the one in Figure 5.6 However, this 

practice option works a bit differently in that every placeholder will end up being a word from 

the same sound type. When the application needs a sentence, a random initial sound is chosen 

from the list specified by the user. The chosen initial sound is the one that will be used to fill in 

all the placeholders. For example, if the chosen initial sound is R, then every word that is added 

to the sentence will have the initial sound of R. Thus, each individual sentence allows the user to 

practice one particular sound. This is different from Practice Random Sentences and Practice by 

Sound Classes where the placeholders are filled in with any type of sound. 

 

AI Approach 

The second way that we can generate sentences is through an AI approach based on 

recurrent neural networks. More specifically, we are using a Python package called textgenrnn 

developed by Max Woolf (2018). One of the advantages of using textgenrnn is access to training 

through Google Colaboratory, a product by Google Research that allows users to write and 

execute Python code in the form of Colab notebooks in their browser. Google Colaboratory also 

provides free access to GPU training, which significantly reduces training times compared to 

CPU-based training.  

 At the beginning of our project, we followed the Woolf’s Colab notebook’s primary 

training method, displayed in Figure 7. This method included generating text on a character level 

from long continuous texts such as Shakespearean plays or famous novels. However, this method 

of training did not perform as desired. The generated text was not natural sounding and did not 

have the desired effect in speech practice. The ineffectiveness was due to multiple different 

factors. Most of the open-source files that were large enough to be a seed text were older novels 

and plays. Hence there was an issue with the vocabulary used not being recent enough. 

Additionally, due to the seed text format, the text generated was grouped in paragraphs, most of 

 
6 In this practice option, the selection screen for class 2 does not include voiced TH. This is because there are only 

about 50 voiced TH words in the English language. This makes generating a sentence that includes several instances 

of those words extremely difficult. 
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which included a significant amount of dialog. This presented an issue since the focus of our app 

is primarily on individual sentences. 

 

 Due to issues presented in the previous paragraph, we resorted to the other training model 

available with textgenrnn, which includes word-level training. This means that the model 

considers a set number of previous words to predict a new one. This results in a model that trains 

much quicker. We experienced training times of under 30 minutes, even when training on 50 

epochs with an rnn_size of 256 and 5 rnn_leyers. The lower training times allowed us to train the 

model better and to produce a higher number of text-generating models contributing to the 

diversity of the text. Another benefit of training on the word level is that it mostly eliminates 

spelling errors, which we experienced when training on the character level. Woolf points out 

issues with punctuation when training on word level; however, this was not an issue in our case. 

The model produces a file with a large number of individual sentences. The sentences are later 

Figure 7 

Model and Training Configuration for the Basic Model 

 

Note. In the basic model, word_level configuration is set to False, signifying character_level generation. The training is 

set to 20 epochs, and the model is set to rnn_size of 128 with three rnn_layers. Training time is approximately 40 

minutes. 
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read by the Google Cloud Text-to-Speech API, not displayed to the user, removing the need for 

perfect punctuation in the sentences. The exact model and training configuration we used in the 

final training is shown in Figure 8. 

 

More improvements followed from changing the seed text. We realized that we needed a 

modern text to generate relevant sentences. Woolf (2018) discusses using data from Reddit to 

generate text. His example output looked close to what we wanted to establish. He provides a 

script to retrieve the required data. To do so, we must utilize Google Cloud BigQuery. There we 

can adjust the subreddit headlines and adjust the time period we want to retrieve. The final 

output is a .csv file with an average size of 2 MB that combines two subreddits. However, not all 

subreddits work well together. For example, /r/sports and /r/askhistorians did not produce 

satisfying output, but combinations of /r/askhistorians and /r/science or /r/news and /r/technology 

did.  

Figure 8 

Model and Training Configuration for the Actual Model used in the App 

 

Note. In this model, word_level configuration is set to True, signifying word_level generation. The training is set to 50 

epochs, and the model is set to rnn_size of 256 with 5 rnn_layers. Training time is approximately 30 minutes. 
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Now we had a trained model that would generate files with thousands of satisfying 

sentences. Hence, the next step was to integrate it into the app. The Colab notebook allows us to 

download a Python script and required weights to generate text on our computers. However, 

textgenrnn is currently only a Python package, so it does not work natively in Swift. 

Furthermore, there is no efficient way to run Python3 scripts in Swift for iOS development. This 

meant that we needed to find a way to deliver new text to the app without running the actual 

model in the app. Thus, we decided to deploy a web server that can be used to retrieve sentences.  

The web server comes in the form of a Python Flask app. The Flask app reads multiple 

text files that the model from the Colab notebook generated. The text is initially read into a list 

with the condition that the sentence is less than 12 words. The sentences under 10 are preferred 

for speech practicing purposes. However, after testing, we determined that the limit of 12 gives 

us the optimal output. The list of sentences is later converted into a set to eliminate any duplicate 

sentences. In my testing, we would have around 50 sentences with a duplicate in 1000 sentences. 

Sentences are then stored in class 1, class 2, class 3, and class 4 lists depending on the class 

criteria. Each sentence must have at least three instances of that sound class’s words. It is 

possible for a sentence to be in more than one category. Sound classes are then converted into an 

HTML message and returned to the page with the class-specific path.  

 The Flask app is then deployed via Heroku, a cloud application platform. When the app is 

deployed via Heroku, it receives a unique URL, and it can be accessed via that URL by any 

machine on the web. This means that we can send an HTTP request from our iOS app to our 

Flask web server. The interface for the AI approach is shown in Figure 4 in the left and right 

images. In order to generate sentences using this approach, the user has to flip the “Use AI 

Model” switch to on. If the user starts a session with the AI model enabled, then the app will 

send an HTTP request to the Heroku server. The server will respond with a list of sentences that 

match the user’s request. If the user is practicing random sentences, then the list of sentences that 

the server returns will be purely random sentences. On the other hand, if the user is practicing by 

sound class, the list of sentences that the server returns will contain sentences that each have 

multiple instances of words from the chosen sound class. The app will choose one of the 

sentences at random to read to the user. 
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5 Measures of Random Sentence Quality 

 We used three different measurements to evaluate the quality of the sentences that are 

generated by the two different approaches. These measurements are the number of desired words 

per sentence, sentence length, and sentence complexity. The number of desired words per 

sentence is the average number of words in a sentence that satisfy the sound class requirement 

given by the user. Sentence length is the average length of a sentence, and we define sentence 

complexity to be the average length of a word in a sentence. It is desirable that the sentences are 

not overly complex and that the sentences are not too long since it may be difficult for the user to 

repeat long and wordy sentences. We will discuss each measurement in further detail in the 

following subsections. 

 

5.1 Desired Words Per Sentence 

 In order to conduct this measurement, we generated lists of class 1, class 2, class 3, and 

class 4 sentences using both the fill-in-the-blank approach and the AI approach. This left us with 

eight different lists to analyze. It is important to note that sentences may contain words that are 

from different sound classes. For example, a class 3 sentence will likely only have a few class 3 

words with the rest of the words being from different classes. We are interested in counting the 

average number of words in the sound class of interest. To do this, we used a Python script to 

count the number of words in each sentence that met the given sound class requirement, and then 

divided by the total number of sentences in the list to obtain the average number of desired 

words per sentence. We used this procedure for all eight lists. Our results are displayed in Figure 

5. Ideally, we want a typical sentence to have multiple occurrences of words that meet the sound 

class requirement. Our results indicate that all practice options for each text generation approach 

have an average number of desired words per sentence greater than 3. This indicates that both 

methods of generating text are producing sentences that meet the requests of the user on average. 
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5.2 Sentence Length 

 The process of obtaining this measurement was very similar to the one in the previous 

subsection. However, since we are only measuring the average length of a sentence, we included 

lists of random sentences generated by each approach. The results can be found in Figure 10. 

Ideally, we want the length of each sentence to be less than 10 words. If a sentence is greater 

than 10 words, then it will become difficult for the user to repeat the sentence. Our results 

indicate that all instances of the fill-in-the-blank approach typically meet this requirement since 

the average sentence length is less than 8 words for all of them. This result makes sense since all 

fill-in-the-blank sentences are generated from template sentences, which means that we can 

control the length of the sentences. On the other hand, all instances of the AI approach average 

just under 10 words per sentence. This means that there are a lot of sentences that are greater 

than 10 words. However, to produce natural sounding sentences using the AI approach, we 

Figure 9 

Average Number of Words from Desired Sound Class Per Sentence 

 

Note. This figure shows the average number of desired words per sentence for each of the four sound classes using the 

two different sentence generation approaches. All categories have an average number of words per sentence greater than 

3, which indicates that a typical sentence is likely to have multiple occurrences of words that are of the sound class 

chosen by the user. 
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ended up using sentences that were less than 12 words long with most being close to 11 words 

long. When we lowered the sentence length further, most sentences that we generated did not 

sound lifelike. However, since the average sentence is less than 10 words long in all cases, a 

typical generated sentence will meet the ideal length requirement. 

 

5.3 Sentence Complexity 

 To measure sentence complexity, we generated two large lists of sentences. One list was 

generated using the fill-in-the-blank approach and the other was generated using the AI 

approach. To measure sentence complexity, we calculated the average length of each word in 

both lists. We did not include single letter words such as “a” or “I” because we felt that they may 

skew our results. We found that the average length of a word using the fill-in-the-blank approach 

was 4.15 characters long and 4.29 characters long using the AI approach. This means that a 

typical word in a sentence has about 4 letters in it, and that most words in a sentence are 

relatively short. Thus, most sentences will not be overly complex. 

 

Figure 10 

Average Length of Sentence 

 

Note. This figure shows the average length of a sentence generated by each approach for all sound classes and random 

sentences. All categories have an average sentence length under 10 words. 
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5.4 AI Approach vs. Fill-in-the-blank Approach 

 The sentences generated by the AI approach and the fill-in-the-blank approach are 

drastically different. The fill-in-the-blank approach may offer more consistent sentences, but the 

sentences are very basic. On the other hand, the AI approach produces more diverse sentences. 

Also, the length of each AI sentence is unpredictable, but the length of each fill-in-the-blank 

sentence is well controlled since those sentences are based on template sentences. The length of 

each sentence is vital to the quality of a practice session for the user. If the user keeps getting 

long, complex sentences, this will take away from the practice session since the user will be 

more focused on saying the sentence quickly instead of focusing on practicing their techniques. 

However, the fact that the fill-in-the-blank approach is based on template sentences is an issue 

since the user may become aware of patterns in the sentences.  

 We believe that this problem can be alleviated if we include a large number of template 

sentences in the app. If we can incorporate more template sentences and if we cannot improve 

the quality of the AI sentences, then we believe that we should use the fill-in-the-blank approach 

in the production version of the app. In the fill-in-the-blank approach, we can easily control 

sentence length, complexity, and number of desired words. This style of sentence does not offer 

as much variety as the ones in the AI approach; however, we do not feel that this is a major issue. 

The point of the app is to provide natural sounding sentences that are customizable for practicing 

speech. It is ideal that the sentences feel random to the user, but this is not completely necessary. 

It is not a major problem, if the user notices patterns in the sentences since it should not take 

away from the practicing experience. 

 

6 Limitations 

 In the app’s current state, it offers two methods of generating sentences: the AI method 

and the fill-in-the-blank method. The fill-in-the-blank method is compatible with all three 

practice options: Practice by Sound Classes, Practice by Individual Sounds, and Practice Random 

Sentences. The AI method only works with Practice by Sound Classes and Practice Random 

Sentences. The app does not provide any analysis to the user, and it is not a substitute for 

professional speech therapy. The point of the app is to help PWS practice their techniques from 

therapy in an effective, intuitive, and customizable way. However, the app, in its current state, 

does have several limitations. 
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 First, the app was primarily tested on an iPhone XS Max, which is the screen size that the 

app works best on. We attempted to run the app on an iPhone 8 Plus, but it did not work. Thus, 

there is no guarantee that the app will function properly on different iPhone screen sizes. We 

were unable to develop for other iPhones since we are using a third-party library called 

RSSelectionMenu to control our multi-selection menus. This library only runs on actual devices 

and not simulators. Thus, we are not able to simulate the app on different screen sizes, which 

hinders our ability to optimize the app for other screen sizes. 

 Next, there are multiple limitations with the AI approach to generating text. The most 

prominent one is the seed text. We used data retrieved from Reddit to train our model. It was in 

the right format, provided modern and relevant vocabulary, and was very accessible and not 

subject to copyright. However, this data is not well regulated, especially some of the subreddits 

we used such as /r/news and /r/technology. They contain certain words and phrases that are either 

inappropriate or could be considered offensive by some users. Since we are working with tens of 

thousands of reddit headlines, we did not develop a way to block this content from the generated 

text. 

 Lastly, the output of the trained AI model is a Python script that imports selected weights 

and temperatures and generates text accordingly. However, we are not able to run Python code in 

an iOS application as of now, which presents another major limitation of the AI model. We had 

to resort to retrieving AI generated sentences from a webserver. This worked fine for our testing 

purposes, but will not translate well into the production version of the app. The server can be 

easily overwhelmed by a large number of requests. 

 

7 Conclusion and Future Work 

7.1 Conclusion 

 In this paper, we discussed our application for PWS. This application is different from 

others on the market in that it allows PWS who have already gone through speech therapy to 

practice their techniques. It also offers customizable practice options by sound class and sound 

type. In our application we include two primary modes, which are Practice by Single Words and 

Practice by Sentences. In Practice by Single Words, the user can either practice by sound class or 

sound type. During a practice session, the user will only hear words that begin with the sound 

type(s) that they specified. In Practice by Sentences, the user can also practice by sound class or 
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by sound type. Additionally, the user can choose to practice random sentences that do not adhere 

to any rules. 

 To generate sentences, we use a fill-in-the-blank approach and an AI approach. In the fill-

in-the-blank approach, each sentence is generated from one of the template sentences included in 

the app. Each sentence has multiple placeholders where a word can be filled in. If the user chose 

to practice random sentences, then any word can replace a placeholder. However, if the user is 

practicing by sound class or sound type, then any word that is substituted for a placeholder must 

start with one of the sound types that the user specified. 

In the AI approach, we retrieve Reddit data via BigQuery to create seed texts. That text is 

then used to train a textgenrnn model in a Colab notebook with word-level training. The trained 

model generates text files with individual sentences in each line. The text files are then read by a 

Python Flask app and filtered to create class-specific lists. Each list will contain sentences with 

less than 12 words in length and at least three instances of class words. The lists are further 

returned to class-specific paths, and the app is deployed via Heroku. The iOS app can then 

modify the URL and send a request to receive the list of sentences. The app will then choose one 

sentence at random every time a sentence needs to be read aloud to the user. 

 

7.2 Future Work 

 In its current state, the app is not fully optimized for all iPhone screen sizes. The app was 

primarily tested on an iPhone XS Max, which is the screen size that it works best on. In the 

future, we hope to optimize the layout of the user interface so that it runs well on all iPhones. 

Additionally, we would like to develop a version of the app using SwiftUI, which is Apple’s new 

development interface. We programmed the current version of the app using Interface Builder 

(or Storyboards), which Apple is hoping to move away from at some point. Transitioning to 

SwiftUI would help futureproof the app and may resolve the screen size issue that we discussed 

earlier. This will also give us an opportunity to improve the user interface since the app currently 

relies on an extremely basic user interface. After making these changes, we hope to publish this 

app to the Apple App Store, so that PWS may begin using it to practice their speech. 

 In the production version of the app, we should rely on only one of our two approaches to 

generating text. There are a lot of changes that we need to make to the AI approach if we choose 

to integrate that method in the production version. To do this, we need to further improve the 
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seed text and optimize the training configurations. This will also involve trying out more 

temperature combinations. If we want to solely rely on the AI model for text generation, this 

means that the AI model would have to be used to generate sentences for Practice by Individual 

Sounds as well since it does not in the current state of the app. Also, we would like to find a way 

to deploy the AI model directly in the app. The current implementation is not efficient since the 

app must communicate with a server to get the AI generated sentences. Lastly, since we are 

hoping to publish this app on the App Store, we will need to filter out offensive words from the 

word lists and generated sentences. On the other hand, the fill-in-the-blank is approach is close to 

being production ready. The only major changes that need to be made are adding more template 

sentences and removing inappropriate words from the word lists. The fill-in-the-blank approach 

may prove to be a more viable option for a production-level application. 
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Characteristics of Adult People with Fluency Disorder. Human: Journal for 

Interdisciplinary Studies, 10(1), 11–21. https://doi.org/10.21554/hrr.042002 

Roche, D. S. (n.d.). names.txt. Retrieved from 

https://www.usna.edu/Users/cs/roche/courses/s15si335/proj1/files.php%3Ff=names.txt&do

wnloadcode=yes 

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical 

Journal, 27(4), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x 

Sutskever, I., Martens, J., & Hinton, G. (2011). Generating text with recurrent neural networks. 

In Proceedings of the 28th International Conference on Machine Learning, ICML 2011. 



33 

Unger, J. P., Glück, C. W., & Cholewa, J. (2012). Immediate effects of AAF devices on the 

characteristics of stuttering: A clinical analysis. Journal of Fluency Disorders, 37(2), 122–

134. https://doi.org/10.1016/j.jfludis.2012.02.001 

Van Borsel, J., Maes, E., & Foulon, S. (2001). Stuttering and bilingualism: A review. Journal of 

Fluency Disorders, 26(3), 179–205. https://doi.org/10.1016/S0094-730X(01)00098-5 

Webster, R. L., & Wohlberg, C. S. (1992). Precision Fluency Shaping Program: Speech 

Reconstruction for Stutterers. The Hollins Communications Research Institute. 

Winston, W. L. (2004). Introduction to Probability Models (4th ed.). Brooks/Cole. 

Woolf, M. (2018). How to Quickly Train a Text-Generating Neural Network for Free. Retrieved 

from https://minimaxir.com/2018/05/text-neural-networks/ 

Woolf, M. (2020). textgenrnn. Retrieved from https://github.com/minimaxir/textgenrnn 

Yairi, E., & Ambrose, N. (2013). Epidemiology of stuttering: 21st century advances. Journal of 

Fluency Disorders, 38(2), 66–87. https://doi.org/10.1016/j.jfludis.2012.11.002 

  



34 

Acknowledgements 

 We would first like to thank our advisor, Dr. Myers, for helping us throughout the whole 

process of developing this application. We also thank Dr. Summet and Dr. Yellen for serving as 

our thesis committee alongside Dr. Myers. Lastly, we would also like to thank Matthew 

Trautmann, Nathaly Espinosa Teran, and Alexander Wehr for their help in developing the initial 

use cases for the app and for aiding in the development of the first working prototype. 


	A Customizable Speech Practice Application for People Who Stutter
	Recommended Citation

	tmp.1620747155.pdf.p8XbB

