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CAYLEY MAP EMBEDDINGS OF COMPLETE GRAPHS

MIRIAM SCHEINBLUM

1. Abstract

This paper looks at Cayley map embeddings of complete graphs on orientable surfaces. Cayley

maps constrain graph embeddings to those with cyclical edge rotations, so optimal embeddings on

surfaces with the minimum genus may not always be possible. We explore instances when Cayley

maps succeed at optimally embedding complete graphs, and when optimal embeddings are not

possible, we determine how close to optimal they can get by finding vertex rotations that result

in the smallest possible genus. Many of the complete graphs we consider have prime numbers of

vertices, so for each complete graph Kn we focus on mappings with the finite cyclic group Zn.

2. Introduction

The topological study of graph embeddings dates back to proofs of the Euler equation in the

1800s [6]. Perhaps the most notable work relating to graph embeddings on surfaces is that of

Gerhard Ringel, whose proofs of the Heawood map-coloring problem involved rigorous calculations

of the genera of optimal embeddings of certain types of graphs [8, 9]. Ringel’s work helped pique

interest among other mathematicians regarding optimal graph embeddings in the 1960s and 1970s

[6]. Embedding a graph is essentially drawing the graph on a surface without allowing any edges

to cross each other. For the purposes of this paper, think of a surface as the two-dimensional

representation of the outer layer of a three-dimensional solid, such as a ball or donut.

Graph embeddings have applications outside of just the field of topological graph theory, for

instance in the design of printed circuit boards [5]. Electrical circuits can be modeled by graphs,

where edges between vertices are the wires between connection points. To avoid short circuiting,

wires cannot cross in electrical circuits, just as no edges can cross in graph embeddings. Since it

may not be possible to connect all the wires without any crossings on a flat chip, printed circuit

boards often have holes and several layers that wires can be routed through to avoid edge crossings.

The addition of layers is comparable to the addition of holes in orientable surfaces of increasing
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genera. Graph embedding problems can help determine how to best design and construct these

circuits.

As you can imagine, coming up with large, optimal graph embeddings can be complex and time

consuming. Cayley maps simplify this process by symmetrically embedding graphs on orientable

surfaces. This process is not always guaranteed to achieve the optimal embedding, but it makes

determining and representing proper graph embeddings much more efficient than other methods. In

this paper, we are interested in exploring how close to the optimal genus a Cayley map embedding

can get. We choose to study the embeddings of complete graphs in particular since these complete

graphs contain all other simple graphs within them. We break down our study of optimal Cayley

map embeddings of complete graphs into several sections.

We will first define terminology and introduce notation in Section 3 to provide the necessary

framework for understanding Cayley map embeddings. In section 4, we will look at the optimal

embeddings of some small complete graphs. Then Section 5 introduces and proves lemmas that

will be essential in proving that some larger Cayley map embeddings are as good as we can get.

The lemmas help us with K11 in Section 6, K13 in Section 7, and K17 in Section 8. Section 9 lists

optimal Cayley map embeddings of complete graphs of the form K12m+7 for nonnegative integers m

and raises a conjecture about embeddings for all m ≥ 0. Some bounds for the number of faces and

genera of embeddings are generalized in Section 10. Finally, we have three appendices. Section 11

summarizes and compares the achieved genus and optimal genus of each complete graph discussed

in the earlier sections. A few supplemental lemmas are provided in Section 12. Finally, Section 13

lists the full Python code used in support of the Section 9 conjecture.

3. Definitions and Notation

This section provides a brief introduction to various concepts from graph theory, group theory,

and topology. A basic understanding of these concepts will be necessary for grasping the nature of

our work with Cayley map embeddings. Additionally, we will define important notation that will

be used throughout the paper. First, we will start by introducing the idea of a graph.

A graph G = (V,E) is made up of a set V of vertices (i.e., points) that are connected by a set E

of edges (i.e., lines). Graphs can be classified based on how their vertices are connected by these

edges. We will be exclusively looking at complete graphs.
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Definition 3.1. A complete graph Kn has n vertices and an edge between every pair of vertices,

for a total of n(n−1)
2 edges.

When drawing graphs, we often want to minimize the number of edges that cross over each other.

Sometimes it is possible to eliminate all edge crossings when drawing a graph on a flat plane (in

which case the graph is planar), but oftentimes we must draw graphs on other surfaces to achieve

this desired result. We do this by embedding graphs on orientable surfaces with increasing numbers

of holes, such as the sphere, torus, double torus, three-holed torus, and so on. The more holes a

surface has, the more potential routes an edge can take to connect vertices without crossing other

edges on the way.

In 1866, Jordan showed that, up to homeomorphism, the set of closed, orientable surfaces consists

of the sphere, torus, double torus, etc., which have genera 0, 1, 2, etc., respectively [7]. An

embedding of a graph G = (V,E) maps the vertices V and edges E onto a surface in such a way

that no edges cross.

Figure 1. Some simple orientable surfaces

Definition 3.2. An embedding of a graph G = (V,E) onto a surface S consists of

(1) a one-to-one function fV : V → S; and

(2) a continuous, one-to-one function fe : [0, 1]→ S for each edge e ∈ E, such that if e connects

vertices v0 and v1, then fe(0) = v0 and fe(1) = v1 (or fe(0) = v1 and fe(1) = v0)

with the property that fe1(x) = fe2(y) for any x, y ∈ (0, 1) implies e1 = e2 (and x = y).

The set of paths corresponding to the images of the functions fe for all e ∈ E divide the surface

into components. Each component is a face of the embedding. If every face is homeomorphic to an

open disk in R2, then it is a well-known fact from algebraic topology that the Euler characteristic
3



χ = |V |−|E|+ |F |, where |V |, |E|, and |F | are the number of vertices, edges, and faces respectively,

is a surface invariant. The genus g of an orientable surface is determined by χ = 2− 2g.

An optimal embedding of a graph G embeds the graph on the surface with the smallest genus,

which we denote as γ(G). The genus of an optimal embedding of a complete graph Kn is given by

Ringel and Young in Theorem 3.3 below [9].

Theorem 3.3. The complete graph Kn has optimal genus

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
.

Given an embedding of a complete graph Kn, genus g ≥ γ(Kn) since the embedding is not

guaranteed to be optimal.

Definition 3.4. A group G is a set with:

(1) An associative binary operation ∗ (i.e., for all a, b ∈ G, a ∗ b ∈ G);

(2) An identity element e (i.e., for all a ∈ G, a ∗ e = e ∗ a = a);

(3) And an inverse for each element (i.e., all a ∈ G have an inverse c ∈ G such that a ∗ c =

c ∗ a = e).

Definition 3.5. A group G is abelian if the operation ∗ is also commutative (i.e., for all a, b ∈ G,

a ∗ b = b ∗ a).

The order of a group element x, denoted ord(x), is the smallest positive integer m such that

x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
m times

= e. Depending on the group operation ∗, people primarily use either addition

notation (e.g., x + y) or multiplication notation (e.g., x · y) when working with group elements.

Thus, we define ord(x) more specifically as the smallest positive integer m such that mx = e or

xm = e using addition or multiplication notation, respectively.

Additionally, the inverse of a group element is denoted differently depending on whether ad-

dition or multiplication notation is being used: the additive inverse of x is denoted −x and the

multiplicative inverse of x is denoted x−1.

An example of an operation that uses addition notation is modular arithmetic, a method of

counting that restricts all possible numbers to a finite set of integers, cycling back to the first

number once the largest number is reached.
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Definition 3.6. Addition modulo n uses the integers 0, . . . , n − 1. Given an integer a, we define

a mod n = r, where r is the remainder upon dividing a by n.

In this paper, we will be using a type of abelian group that uses modular arithmetic as its

operation.

Definition 3.7. The finite cyclic group Zn = {0, 1, . . . , n− 1} is an abelian group under addition

modulo n.

For the group Zn, the identity element is e = 0 because x+ 0 = 0 + x = x for any x ∈ Zn. The

inverse of x is −x = n− x and the order of x, ord(x), is the smallest integer m such that mx = 0.

Now that we have covered all the necessary background terminology, we will introduce Cayley

graphs and Cayley maps. Cayley graphs are a way to draw pictures of groups.

Definition 3.8. Suppose H is a group with n elements and X is a subset of H −{e} that is closed

with respect to inverses. The Cayley graph CG(H,X) is a graph on n vertices, labeled by the n

elements of H. The edges are determined by X: vertices g and h are adjacent if and only if there

exists some x ∈ X such that g = h ∗ x (where ∗ is the group operation of H).

For example, in Figure 2a, the complete graph K4 is represented by the Cayley graph CG(Z2 ×

Z2, {(0, 1), (1, 0), (1, 1)}), where Z2×Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)} is a group under the operation

component-wise addition modulo 2. The four vertices are labeled by the four elements of Z2 × Z2

and the edges are determined by {(0, 1), (1, 0), (1, 1)}: the (0, 1)-edges are red, the (1, 0)-edges are

blue, and the (1, 1)-edges are green.

We can also represent K4 using the Cayley graph CG(Z4, {1, 2, 3}). In Figure 2b, the four vertices

are labeled by the four elements of Z4 and the edges are determined by {1, 2, 3}. The blue edges

are 1-edges in one direction and 3-edges in the other direction, and red edges are 2-edges in both

directions.

Cayley maps embed Cayley graphs onto orientable surfaces without edge crossings.

Definition 3.9. Cayley map CM (H, ρ) embeds Cayley graph CG(H,X) onto a surface, where X is

a closed subset of H and ρ = (x1, x2, . . . , xk) is a cyclic permutation of X that gives the counter-

clockwise rotation of edges around each vertex.

Although no Cayley map embeds K4 on a sphere using the group Z4, an optimal embedding is

possible using the group Z2 × Z2. In Figure 4a, the Cayley map CM (Z2 × Z2, ((0, 1), (1, 0), (1, 1)))
5



(a) CG(Z2 × Z2, {(0, 1), (1, 0), (1, 1)}) (b) CG(Z4, {1, 2, 3})

Figure 2. Cayley graph representations of K4

Figure 3. The counterclockwise edge rotation around each vertex v in a Cayley
map embedding with ρ = (x1, x2, . . . , xk)

optimally embeds CG(Z2 × Z2, {(0, 1), (1, 0), (1, 1)}) onto a sphere. Figure 4b shows the counter-

clockwise rotation ρ = ((0, 1), (1, 0), (1, 1)) of each vertex. This embedding has Euler characteristic

χ = 4− 6 + 4 = 2, so K4 is embedded on a surface with genus g = 0 = γ(K4), giving us an optimal

embedding on a sphere using a Cayley map.

Faces generated by Cayley maps are described by disjoint cyclic permutations of their edge types

through permutation λ. For example, if (a, b, c) is a cycle in λ, then in a clockwise boundary walk

of a face generated by the embedding, any edge of type a is followed by an edge of type b, and

likewise any edge of type b is followed by an edge of type c, and any edge of type c is followed by an

edge of type a. For example, the Cayley map CM (Z2 × Z2, ((0, 1), (1, 0), (1, 1))) from Figure 4 has

λ = ((0, 1), (1, 0), (1, 1)) which produces four 3-gons. The relationship between λ and ρ is defined

below.
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(a) Embedding has four faces (b) Rotation of each vertex

Figure 4. CM (Z2 × Z2, ((0, 1), (1, 0), (1, 1))) optimally embeds K4 on a sphere

Definition 3.10. Suppose H is a group and X is a subset of H that is closed with respect to

inverses. Then λ(x) = ρ(x−1) (and therefore ρ(x) = λ(x−1)).

If ρ = (. . . , x, y, . . . ), then ρ(x) = y and the next edge leaving a vertex counterclockwise from

the x-edge is the y-edge. Likewise, if (. . . , x, y, . . . ) is a disjoint cycle in λ, then λ(x) = y and an

edge of type y follows an edge of type x in a clockwise walk along the boundary edges of a face.

If π is a cyclic permutation, the size |π| is the number of elements that are not fixed by π. We

will call a cyclic permutation π a k-cycle when |π| = k. If H is a group and π = (x1, x2, . . . , xn)

is a cyclic permutation of elements of H, the multiplicity of π, denoted mult(π), is the order of

x1 · x2 · · ·xn in H.

In this paper, we will be primarily focusing on Cayley maps with a prime number p of vertices.

Every group with prime number p of elements is isomorphic to the finite cyclic group Zp. Hence,

for complete graph Kp, we have Cayley graph CG(Zp, X) embedded by a Cayley map of the form

CM (Zp, ρ), where ρ is a cyclic permutation of X = Zp − {0}. Thus, when looking at any Cayley

Map CM (Zn, ρ), all arithmetic will be assumed to be addition modulo n. The order of a group

element x ∈ Zp, denoted ord(x), is the smallest integer n such that nx = 0. If λ = (x1, x2, . . . , xn)

is a cyclic permutation of group elements, the multiplicity of λ, mult(λ), is the order of the sum

x1 + x2 + · · ·+ xn in Zp.

We will write λ = λ1 · · ·λm as a product of m disjoint cyclic permutations. If λi is a cyclic

permutation of group elements, Face(λi) = |λi| ·mult(λi). We will say λi generates k-gons when
7



Face(λi) = k. We determine how many k-gons λi generates using p|λi|
Face(λi)

. If λi = (x1, x2, . . . , xn)

is a cyclic permutation of group elements, Sum(λi) = x1 + x2 + · · ·+ xn.

4. Small Complete Graph Embeddings

It is possible to optimally embed several small complete graphs using Cayley maps. We will

describe optimal embeddings for K5, K6, and K7 on the torus. In order to better grasp the

behavior of these embeddings, we will use the flat torus shown in Figure 5 to visualize these genus

1 embeddings. Surfaces with higher genera can be represented using flat polygons as well [5], but

we will just discuss them combinatorially.

Figure 5. Unrolling the torus into a flat rectangle representation. Edges that go
off one side reenter on the corresponding side. The four corners all join at one single
point.

We are able to embed K5 optimally on a torus using the Cayley map CM (Z5, (1, 2, 4, 3)) which

has λ = (1, 3, 4, 2). The rotation around each vertex is shown in Figure 6b. This embedding

produces five 4-gons, seen in Figure 6a, and has Euler characteristic χ = 5 − 10 + 5 = 0, so the

surface has genus g = 1 = γ(K5). Therefore, K5 is embedded on a torus, which is an optimal

Cayley map embedding according to Theorem 3.3.

It is also possible to optimally embed K6 on a torus using a Cayley map. The Cayley map

CM (Z6, (1, 5, 3, 2, 4)) has λ = (1, 3, 2)(4)(5), producing eight 3-gons and one 6-gon for nine faces

total, represented in Figure 7a. The vertex rotation is shown in Figure 7b. The resulting Euler

characteristic is χ = 0, so this Cayley map optimally embeds K6 on a torus with genus γ(K6) =

g = 1.

There are two Cayley maps that optimally embed K7 on a torus. Both generate fourteen 3-gons.

One of these Cayley maps is CM (Z7, (1, 3, 2, 6, 4, 5)) with λ = (3, 5, 6)(1, 4, 2). The rotation around

each vertex is shown in Figure 8. The flat polygon representation of this embedding of K7 could

be constructed from the given information in the same manner as in the previous examples. The

Euler characteristic χ = 7−21+14 = 0, so the surface has genus g = 1. Therefore, K7 is embedded

on a torus, optimal by Theorem 3.3 since γ(K7) = 1.
8



(a) Embedding has five faces (b) Rotation of each vertex

Figure 6. CM (Z5, (1, 2, 4, 3)) optimally embeds K5 on a torus

(a) Embedding has nine faces (b) Rotation of each vertex

Figure 7. CM (Z6, (1, 5, 3, 2, 4)) optimally embeds K6 on a torus

The complete graphs on five, six, and seven vertices were all optimally embedded using Cayley

maps. Recall from the previous section that the complete graph on four vertices was optimally

embedded on the sphere using a Cayley map with the group Z2 × Z2 instead of Z4. From now

on, we will only need to consider the group Zn since we will mostly be exploring complete graphs

Kn with n prime. In the next section, we will prove several lemmas and theorems that will help

us characterize Cayley map embeddings for larger complete graphs, particularly those with prime

numbers of vertices.
9



Figure 8. Vertex rotation for CM (Z7, (1, 3, 2, 6, 4, 5))

5. Initial Lemmas

We now prove several useful lemmas that we will refer to in later sections, primarily Sections

6, 7, and 8, to help us find best possible Cayley map embeddings of some complete graphs. The

Inverse Theorem by Spies [10], restated below, will be useful in several of these proofs.

Theorem 5.1. Suppose H is a group. For a Cayley Map CM (H, ρ), if a cycle λi in λ is closed

with respect to inverses, then for all x ∈ ρ, x ∈ λi.

This theorem tells us that we can only have a cycle in λ that is closed with respect to inverses

if it contains all elements of ρ. The next lemma, which results almost directly from Lagrange’s

Theorem, will restrict the possible multiplicities of cycles in λ for complete graphs with prime

numbers of vertices.

Lemma 5.2. For a Cayley map CM (Zp, ρ) with prime p, any cyclic factor of λ has either multi-

plicity 1 or multiplicity p.

Proof. Let λi be a cyclic factor of λ for a Cayley map CM (Zp, ρ) with prime p. By group closure,

Sum(λi) = y for some y ∈ Zp. Thus, by definition of multiplicity, mult(λi) = ord(y) which must

divide |Zp| = p by Lagrange’s Theorem. Since p is prime, mult(λi) = 1 or mult(λi) = p. �

Now we will prove several lemmas restricting the elements of cycles in λ. First we show that a

3-cycle of multiplicity 1 cannot contain inverse elements.

10



Lemma 5.3. For any Cayley map CM (Zn, ρ), no 3-cycle in λ that generates 3-gons can contain

inverse elements.

Proof. Suppose λ1 is a cyclic factor of λ such that |λ1| = 3 and Face(λ1) = 3. Let x, y, and z be

the three elements of λ1. Therefore, mult(λ1) = ord(x+y+ z) = 1. By definition of order of group

elements, we know x+ y + z = 0. If y is the inverse of x, meaning x+ y = 0, then we have z = 0,

a contradiction by the definition of CM (Zn, ρ). Therefore, λ1 cannot contain inverse elements. �

Now we look at inverse elements in 4-cycles of multiplicity 1. Unless λ is a cyclic permutation

such that |λ| = 4, no 4-cycle of multiplicity 1 in λ can contain any inverse elements.

Lemma 5.4. Suppose H is an abelian group. For any Cayley map CM (H, ρ), if λ1, a factor of λ,

is a 4-cycle that generates 4-gons and λ1 6= λ, then λ1 cannot contain inverse elements.

Proof. We prove the contrapositive. Suppose λ1, a factor of λ, is a 4-cycle that permutes the

elements {a, b, c, d}, where a = −b. If λ1 generates 4-gons, meaning Face(λ1) = 4, then mult(λ1) =

1. This implies a+b+c+d = 0. Since a+b = 0, by substitution we know c+d = 0, meaning d is the

inverse of c. Therefore, λ1 is closed with respect to inverses. By Theorem 5.1, λ1 = λ. Therefore,

if λ1 is a 4-cycle that generates 4-gons and λ1 6= λ, then λ1 cannot contain inverse elements. �

The next few lemmas use the orbit of one cycle of λ to restrict the elements and orbits of addi-

tional cycles of λ. We first show that we only have λ1 = (x1, x2, . . . , xk) and λ2 = (−x1,−x2, . . . ,−xk)

for some odd integer k if λ1 and λ2 are the only factors of λ.

Lemma 5.5. Suppose H is an abelian group, X = {x1, x2, . . . , xn} is a closed subset of H, and ρ

is a cyclic permutation of X. For the Cayley Map CM (H, ρ), if there are at least three factors of λ

and λ1 = (x1, x2, . . . , xk) for some odd integer k < n
2 , then λ2 6= (−x1,−x2, . . . ,−xk).

Proof. We prove the contrapositive. Let λ1 = (x1, x2, . . . , xk) and λ2 = (−x1,−x2, . . . ,−xk) for

some odd k < n
2 . By Definition 3.10, ρ(x1) = −x2, ρ(−x2) = x3, . . . , ρ(−xk−1) = xk, ρ(xk) =

−x1,ρ(−x1) = x2, . . . , ρ(−xk) = x1, resulting in ρ = (x1,−x2, x3, . . . ,−xk−1, xk,−x1, x2,−x3, . . . ,

xk−1,−xk). Since all elements of ρ are in λ1 and λ2, λ has only two factors, a contradiction. Hence,

if λ1 and λ2 are not the only two factors of λ and λ1 = (x1, x2, . . . , xk) for some odd integer k < n
2 ,

then λ2 6= (−x1,−x2, . . . ,−xk). �

Corollary 5.6 is an immediate result of Lemma 5.5 when k = |λ1| = 3.
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Corollary 5.6. Suppose H is an abelian group, X = {x1, x2, . . . , xn} is a closed subset of H, and

ρ is a cyclic permutation of X. For the Cayley Map CM (H, ρ), if λ 6= λ1λ2 and λ1 = (x1, x2, x3),

then λ2 6= (−x1,−x2,−x3).

Now we expand on Corollary 5.6 by showing that if λ has factors λ1 and λ2, both 3-cycles of

multiplicity 1, and at least one other factor, then λ1 can only contain one element that is the inverse

of an element in λ2.

Lemma 5.7. Suppose λ1 and λ2 are factors of λ, where λ 6= λ1λ2, for Cayley map CM (Zp, ρ) with

prime p, such that |λ1| = |λ2| = 3 and mult(λ1) = mult(λ2) = 1. If λ1 = (a, b, c) and −a ∈ λ2,

then −b,−c 6∈ λ2

Proof. Let λ1 = (a, b, c) and−a ∈ λ2. Suppose−b, x ∈ λ2. Sincemult(λ2) = 1, −a−b+x = 0. Also,

sincemult(λ1) = 1, we know a+b+c = 0. By the definition of inverse elements, a+b+c−a−b−c = 0,

implying −a − b − c = 0. It follows that x = −c such that −a,−b,−c ∈ λ2. By Corollary 5.6,

λ2 6= (−a,−b,−c). Additionally, if λ2 = (−a,−c,−b), then ρ is not a cyclic permutation, a

contradiction. Thus, −b 6∈ λ2. By symmetric argument, −c 6∈ λ2. �

Next we prove several lemmas about the faces generated by λ for a Cayley map CM (Zp, ρ) with

prime p. Recall that a cycle λi in λ generates p|λi|
k k-gons, where k = Face(λi) = |λi|mult(λi).

First we show that any 1-cycle in λ must have multiplicity p, and therefore generates only one face.

Lemma 5.8. For a Cayley map CM (Zp, ρ) with prime p, any 1-cycle in λ has multiplicity p and

generates one face, a p-gon.

Proof. Since p is prime, ord(x) = p for any x ∈ λ. Let λ1 = (x1) be a 1-cycle in λ. Therefore,

mult(λ1) = ord(x1) = p and Face(λ1) = mult(λ1) = p. Thus, a λ1 produces one face, a p-gon. �

Similarly, any 2-cycle in λ generates only one face because it also must have multiplicity p.

Lemma 5.9. For a Cayley map CM (Zp, ρ) with prime p, any 2-cycle in λ has multiplicity p and

generates one face, a 2p-gon.

Proof. Let CM (Zp, ρ) be a Cayley map for Kp with prime p. If p = 3, the only possible Cayley

map for Kp is CM (Z3, (1, 2)), which has λ = (1)(2). Thus, a Cayley map CM (Zp, ρ) with a 2-cycle

must have prime p ≥ 5. Let λ1 = (x1, x2) be a 2-cycle in λ. By Lemma 5.2, mult(λ1) = 1 or
12



mult(λ1) = p since p is prime. By Theorem 5.1, mult(λ1) = ord(x1 + x2) 6= 1, so mult(λ1) = p.

Hence, Face(λ1) = 2mult(λ1) = 2p and therefore λ1 generates one face, a 2p-gon. �

Like 1-cycles and 2-cycles, any cycle in λ with three or more elements generates only one face

when it has multiplicity p. However, a cycle of at least size three can also have multiplicity 1 and

generate p faces.

Lemma 5.10. Suppose a Cayley map CM (Zp, ρ) with prime p has a factor λ1 of λ. If |λ1| ≥ 3,

then λ1 either generates one face or p faces.

Proof. Let |λ1| ≥ 3 for CM (Zp, ρ) with prime p. By Lemma 5.2, mult(λ1) = 1 or mult(λ1) = p.

If mult(λ1) = 1, then Face(λ1) = |λ1|, so λ1 generates p|λ1|
|λ1| = p faces. If mult(λ1) = p, then

Face(λ1) = p|λ1|, so λ1 generates p|λ1|
p|λ1| = 1 face. Therefore, λ1 generates either one face or p

faces. �

By Lemma 5.2, a Cayley map CM (Zp, ρ) with prime p can only have cycles of multiplicity 1 and

multiplicity p in λ. For a Cayley map CM (Zp, ρ) with prime p, we will call λ an (m,n)-permutation

when λ has m multiplicity 1 cycles and n multiplicity p cycles.

Theorem 5.11. If CM (Zp, ρ) with prime p is a Cayley map such that λ is an (m,n)-permutation,

meaning λ has m cycles of multiplicity 1 and n cycles of multiplicity p, then λ generates mp + n

faces.

Proof. Let CM (Zp, ρ) with prime p have an (m,n)-permutation λ. By Lemmas 5.8 and 5.9, any

1-cycle or 2-cycle in λ has multiplicity p and generates one face. By Lemma 5.10, a cycle of at least

size 3 has either multiplicity p and generates one face or has multiplicity 1 and generates p faces.

Thus, the m multiplicity 1 cycles generate p faces each and the n multiplicity p cycles generate one

face each, for a total of mp+ n faces. �

An (m,n)-permutation λ for CM (Zp, ρ) with prime p generates mp+ n faces by Theorem 5.11.

Since |ρ| = p − 1, it is clear that 0 ≤ n < p for any (m,n). Additionally, 0 ≤ m ≤ bp−13 c since

3-cycles are the smallest cycle that can have multiplicity 1 by Lemmas 5.8, 5.9, and 5.10. We will

say (a, b) > (c, d) when ap+ b > cp+ d, meaning an (a, b)-permutation generates more faces than

a (c, d)-permutation.
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Theorem 5.12. For a Cayley map CM (Zp, ρ) with prime p, λ can be an (a, b)-permutation or a

(c, d)-permutation. If a > c or if a = c and b > d, then (a, b) > (c, d).

Proof. Suppose a > c, meaning a ≥ c + 1 since a and c are integers. Since p > 0, multiplying by

p gives ap ≥ cp + p. Clearly b ≥ 0 so ap + b ≥ ap. By transitivity, ap + b ≥ cp + p. Additionally,

cp + p > cp + d since p > p − 1 = |ρ| ≥ d so p > d. By transitivity, ap + b > cp + d. Hence,

(a, b) > (c, d) when a > c.

Now suppose a = c and b > d. It immediately follows that ap = cp and thus ap + b > cp + d.

Therefore, (a, b) > (c, d) when a = c and b > d. �

Corollary 5.13 follows from Theorem 5.12 because (a, b) > (m,n) means an (a, b)-permutation

generates more faces than an (m,n)-permutation. A Cayley map with λ that generates the maxi-

mum possible number of faces is the best possible embedding for that graph.

Corollary 5.13. Let CM (Zp, ρ) with prime p have λ that is an (a, b)-permutation. If (a, b) ≥ (m,n)

for any other (m,n)-permutation, then CM (Zp, ρ) is a best possible Cayley map embedding of Kp.

By Corollary 5.13, it is clear that a (bp−13 c, p− 1− 3bp−13 c)-permutation is better or as good as

any other (m,n)-permutation.

Theorem 5.14. For a Cayley map CM (Zp, ρ) with prime p, if λ is a (bp−13 c, p − 1 − 3bp−13 c)-

permutation, then CM (Zp, ρ) is a best possible Cayley map embedding of Kp.

Proof. Let CM (Zp, ρ) be a Cayley map for for the complete graph Kp with prime p. By definition,

ρ is a cyclic permutation of Zp − {0}, so we have |Zp − {0}| = p− 1 elements in ρ and the disjoint

cycles of λ. By Lemmas 5.8 and 5.9, any 1-cycle or 2-cycle in λ has multiplicity p and by Lemma

5.10, a 3-cycle or larger can have multiplicity 1 or multiplicity p. Therefore, the maximum number

of multiplicity 1 cycles is bp−13 c. Then p−1−3bp−13 c elements are not in multiplicity 1 cycles, so to

maximize the number of multiplicity p cycles, each element is in a 1-cycle, resulting in p−1−3bp−13 c

multiplicity p cycles. This results in a (bp−13 c, p − 1 − 3bp−13 c)-permutation, where bp−13 c ≥ m for

all (m,n)-permutations, and p − 1 − 3bp−13 c ≥ n for all (bp−13 c, n)-permutations. Therefore, by

Corollary 5.13, a (bp−13 c, p− 1− 3bp−13 c)-permutation is a best possible Cayley map embedding of

Kp. �
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Now we prove several lemmas about the size and multiplicity of cycles in λ. First we show that

if there are m factors of λ and m−1 of them are known to have multiplicity 1, then the final factor

must also have multiplicity 1.

Lemma 5.15. For a Cayley map CM (Zn, ρ) with odd n, if λ has m cyclic factors and mult(λi) = 1

for all i ∈ {1, . . . ,m− 1}, then mult(λm) = 1.

Proof. Let λ have m ≥ 2 factors and mult(λi) = 1 for all i ∈ {1, . . . ,m−1}. Therefore, Sum(λi) = 0

for all i so Σm−1
i=1 Sum(λi) = 0. Since n is odd, Σn−1

k=1k = 0. Additionally, Σn−1
k=1k = Σm

i=1Sum(λi) =

Σm−1
i=1 Sum(λi) + Sum(λm) = 0. By substitution Sum(λm) = 0. This implies mult(λm) = 1. �

The corollary below follows directly from Lemma 5.15 when n is prime.

Corollary 5.16. A Cayley map CM (Zp, ρ) with prime p cannot have λ that is a (k, 1)-permutation

for k ≥ 1.

If we know a Cayley map CM (Zp, ρ) generates n-gons, then we can determine the size and

multiplicity of certain factors of λ depending on whether n < p or n ≥ p.

Lemma 5.17. If a Cayley map CM (Zm, ρ) has λ that generates n-gons, where n < m and

gcd(m,n) = 1, then λ has at least one factor, λ1, such that |λ1| = n and mult(λ1) = 1.

Proof. For λ1 to generate n-gons, Face(λ1) = |λ1| ·mult(λ1) = n. Hence, mult(λ1) divides n. Also,

by Lagrange’s Theorem, mult(λ1) must divide m, the size of the group, so mult(λ1) is a common

divisor of m and n. Since gcd(m,n) = 1, mult(λ1) = 1. This means |λ1| = n. Therefore, the only

way to have Face(λ1) = n is when |λ1| = n and mult(λ1) = 1. �

Corollary 5.18 follows from Lemma 5.17 when the number of n-gons is known, because each λi

in λ for CM (Zm, ρ) generates m|λi|
n = mn

n = m n-gons. When there are r total n-gons and each λi

generates m of them, there must be r
m factors λi.

Corollary 5.18. If a Cayley map CM (Zm, ρ) has λ that generates r n-gons, where n < m and

gcd(m,n) = 1, then λ has factors λi such that |λi| = n and mult(λi) = 1 for all i ∈ {1, . . . , rm}.

Similarly, Lemma 5.19 tells us about certain factors of λ based on how many n-gons are generated

but for CM (Zp, ρ) with prime p and n ≥ p.
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Lemma 5.19. If a Cayley map CM (Zp, ρ) with prime p has λ that generates m n-gons, where

n ≥ p, then λ has factors λi such that |λi| = n
p and mult(λi) = p for all i ∈ {1, . . . ,m}.

Proof. Suppose λ generates m n-gons for some n ≥ p. Let λi be a factor of λ that generates n-gons.

Thus, Face(λi) = |λi| · mult(λi) = n ≥ p so |λi| · mult(λi) > p − 1. Since the cycles of λ have

p− 1 distinct elements, p− 1 ≥ |λi| ≥ 1. By transitivity, |λi| ·mult(λi) > |λi|, so mult(λi) > 1 and

therefore mult(λi) = p by Lemma 5.2. Thus, Face(λi) = p|λi| = n so |λi| = n
p . Also, λi generates

p|λi|
Face(λi)

= n
n = 1 n-gon, so there must be m such factors λi of λ to generate m n-gons. Hence, λ

has m factors λi such that |λi| = n
p and mult(λi) = p for all i ∈ {1, . . . ,m}. �

The following lemma uses Definition 3.10, which states λ(x) = ρ(x−1), to determine the size of

cyclic permutation ρ.

Lemma 5.20. Suppose H is a group, X = {x1, x2, . . . , xn} is a closed subset of H, and ρ is a cyclic

permutation of X. For the Cayley Map CM (H, ρ), if λ(x−11 ) = x2, λ(x−12 ) = x3, λ(x−13 ) = x4, . . . ,

λ(x−1k ) = x1, then ρ is a k-cycle.

Proof. Let CM (H, ρ) be a Cayley map with λ such that λ(x−11 ) = x2, λ(x−12 ) = x3, λ(x−13 ) = x4, . . . ,

λ(x−1k ) = x1. By Definition 3.10, ρ(x1) = λ(x−11 ) = x2, ρ(x2) = λ(x−12 ) = x3, ρ(x3) = λ(x−13 ) = x4,

. . . , ρ(xk) = λ(x−1k ) = x1. This results in ρ = (x1, x2, x3, . . . , xk), a k-cycle. �

Corollary 5.21 follows directly from Lemma 5.20 when k = 2.

Corollary 5.21. Suppose CM (H, ρ) is a Cayley Map, where H is a group and ρ is a cyclic per-

mutation of elements of H. If a, b ∈ ρ, such that λ(a) = b−1 and λ(b) = a−1, then ρ is a 2-cycle.

In general, a Cayley map CM (Zp, ρ) with prime p can achieve the optimal embedding of Kp if it

generates only 3-gons.

Theorem 5.22. If CM (Zp, ρ) with prime p is a Cayley map such that λ generates only 3-gons,

then CM (Zp, ρ) is the optimal Cayley map embedding of Kp.

Proof. Let CM (Zp, ρ) be a Cayley map for for the complete graph Kp with prime p. If p = 3

then the only Cayley map embedding of Kp is CM (Z3, (1, 2)) with λ = (1)(2). Thus, λ generates

two 3-gons, which results in the optimal genus g = 0. Now suppose p > 3. By Lemma 5.17,

|λi| = 3 and mult(λi) = 1 for all i ∈ {1, 2, . . . , p−13 }. Hence, λ generates p(p−1)
3 faces. Using the
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Euler characteristic, we get χ = p − p(p−1)
2 + p(p−1)

3 = −p2+7p
6 . Then using the genus formula,

g = p2−7p+12
12 = (p−3)(p−4)

12 = γ(Kp), the optimal genus by Definition 3.3. Therefore, a Cayley map

CM (Zp, ρ) with λ that generates only 3-gons must be the optimal embedding. �

These lemmas, theorems, and corollaries will be used in the next few sections to prove that

certain Cayley map embeddings are best possible despite being nonoptimal.

6. Best Possible Cayley Map for K11

By Theorem 3.3, the optimal genus of an embedding of K11 is γ(K11) = 5. Using the Euler

characteristic and genus formula for orientable surfaces, we see that a genus of 5 would require the

embedding to generate at least 36 faces. However, since each cycle of λ either produces one face or

eleven faces, and eleven faces is only possible from a cycle with at least three elements, it is clear

that a Cayley map for K11 can only produce a maximum of thirty-four faces. Thus, the optimal

embedding of K11 on a 5-holed torus is impossible with a Cayley map. In fact, we will prove that

using Cayley maps, the simplest surface we are able to embed K11 on is 10-holed torus with g = 10.

We achieve a best possible embedding using the Cayley map CM (Z11, (1, 7, 4, 5, 6, 10, 2, 9, 8, 3)), but

before we prove this in Theorem 6.2, we must show that no Cayley map embedding of K11 has only

3-gons and 4-gons as faces.

Lemma 6.1. No Cayley map embedding of K11 produces only 3-gons and 4-gons.

Proof. Since the only group with eleven elements is Z11, let CM (Z11, ρ) be a Cayley map em-

bedding of K11, where ρ has 10 elements, composed of five nonzero elements and their inverses:

a, b, c, d, e,−a,−b,−c,−d,−e.

Since 3 < p and 4 < p, by Lemma 5.17, to get 3-gons and 4-gons we need at least one 3-cycle,

called λ1 and at least one 4-cycle, called λ3, such that mult(λ1) = mult(λ3) = 1. Note that

|λ1| = 3 and |λ3| = 4, such that |λ1| + |λ3| = 7. Since the cycles of λ have ten distinct elements,

and 10 − |λ1| − |λ3| = 3 unused elements, there must be another factor of λ, called λ2, such that

|λ2| = 3. Thus, λ2 must be a 3-cycle that generates 3-gons and mult(λ2) = 1. Hence, there are

three factors of λ, called λ1, λ2, and λ3, such that λ1 and λ2 are 3-cycles, λ3 is a 4-cycle, and

mult(λ1) = mult(λ2) = mult(λ3) = 1. By Lemmas 5.3 and 5.4, we know there can be no inverses

within λ1, λ2, or λ3.
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Let a, b, c, d ∈ λ3. Since λ1 and λ2 also cannot have inverses, without loss of generality we can

assume λ1 = (−a,−c,−e) and λ2 = (−b,−d, e). Since λ(−a) = −c, by Corollary 5.21, λ(c) 6= a.

Therefore either λ(c) = b or λ(c) = d.

First suppose λ(c) = d. Clearly λ(d) 6= c and λ(d) 6= d since |λ3| = 4. By Corollary

5.21, λ(d) 6= b since λ(−b) = −d. Thus, λ(d) = a so λ3 = (c, d, a, b). However, then ρ =

(a,−c, d, e,−a, b,−d)(c,−e,−b) by Definition 3.10, a contradiction since ρ is cyclic. Hence, λ(c) 6=

d.

Now suppose λ(c) = b. By Definition 3.10, ρ = (. . . , d, e,−a, . . . ). Thus, λ(a) 6= d, resulting in

λ3 = (c, b, d, a). By Definition 3.10, ρ = (a,−c, b,−d)(c,−e,−b, d, e,−a), which contradicts ρ being

a cyclic permutation. Hence, λ(c) 6= b.

Therefore, there is no possible rotation for λ3, so there is no rotation ρ for K11 producing only

3-gons and 4-gons. �

Now that we have shown that no Cayley map embedding of K11 produces only 3-gons and 4-gons,

we are ready to prove that the best possible embedding generates 26 faces and has genus 10.

Theorem 6.2. A best possible Cayley map embedding of K11 generates twenty-two 3-gons and four

11-gons and is on a 10-holed torus.

Proof. The only group to consider for K11 is Z11. Therefore, the cycles in λ have 10 distinct ele-

ments. By Theorem 5.14, a Cayley map embedding of K11 by CM (Z11, ρ) with a (3, 1)-permutation

λ is best possible, but such a λ contradicts Corollary 5.16 and is not possible. The next best λ is

a (3, 0)-permutation, which is only possible by having two 3-cycles of multiplicity one and one 4-

cycle of multiplicity one, which would generate only 3-gons and 4-gons and thus contradict Lemma

6.1. Then by Corollary 5.13, a (2, 4)-permutation is the next best. This is possible with the Cay-

ley map CM (Z11, (1, 7, 4, 5, 6, 10, 2, 9, 8, 3)) with λ = (1, 2, 8)(5, 10, 7)(3)(4)(6)(9) that produces 26

faces: twenty-two 3-gons and four 11-gons. Thus, a best possible Cayley map embedding of K11

has λ that is a (2, 4)-permutation and generates twenty-two 3-gons and four 11-gons, embedding it

on a ten-holed torus. �

7. Best Possible Cayley Map for K13

By Theorem 3.3, the optimal genus of an embedding of K13 is γ(K13) = 8. Simple algebra using

the Euler characteristic and genus formula for an orientable surface shows that the only way to
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achieve this genus would be with an embedding that generates at least fifty-one faces. Since each

cycle of λ either produces one face or thirteen faces, it is clear that the only such embedding for

K13 would have λ with four 3-cycles of multiplicity 1 to generate fifty-two faces. However, we will

show that this optimal embedding is not possible with a Cayley map, and that the best embedding

we can do generates only forty-one faces with a genus of 13.

Theorem 7.1. No Cayley map embedding of K13 produces only 3-gons.

Proof. Let CM (Z13, ρ) be a Cayley map for K13 that produces only 3-gons. By Corollary 5.18, λ1,

λ2, λ3 and λ4 are factors of λ such that |λi| = 3 and mult(λi) = 1 for i ∈ {1, 2, 3, 4}. There are

twelve nonzero elements in ρ: a, b, c, d, e, f,−a,−b,−c,−d,−e,−f . By Lemma 5.3, there can be

no inverse elements within any λi. Thus, let λ1 = (a, b, c). By Lemma 5.7, −a, −b, and −c must

be in separate factors of λ. Therefore, suppose −a ∈ λ2, −b ∈ λ3, and −c ∈ λ4. Without loss of

generality, let λ2 = (−a, d, e). Then by Lemma 5.7, −d and −e must be in separate λi.

Suppose −e ∈ λ3 and −d ∈ λ4. Without loss of generality, f ∈ λ3 and −f ∈ λ4 and so

−b,−e, f ∈ λ3 and −c,−d,−f ∈ λ4. By Definition 3.10, ρ = (. . . ,−c, a, d, . . . ) so λ(−d) 6= −c since

ρ is not a 3-cycle. Thus, λ4 = (−d,−f,−c). Now ρ = (. . . ,−e,−a, b, . . . ) by Definition 3.10, so

λ(−b) 6= −e. Thus, λ3 = (−b, f,−e) so λ = (a, b, c)(−a, d, e)(−b, f,−e)(−d,−f,−c), but then by

Definition 3.10, ρ = (a, d,−f,−e,−a, b, f,−c)(c,−d, e,−b), a contradiction since ρ must be a cyclic

permutation. Hence, we cannot have −e ∈ λ3 and −d ∈ λ4.

Now suppose −d ∈ λ3 and −e ∈ λ4. Without loss of generality, f ∈ λ3 and −f ∈ λ4 so

−b,−d, f ∈ λ3 and−c,−e,−f ∈ λ4. If λ3 = (−b,−d, f), by Definition 3.10, ρ = (. . . ,−c, a, d, f, . . . ).

Since ρ is not a 4-cycle, λ(−f) 6= −c, so λ4 = (−f,−e,−c), resulting in λ = (a, b, c)(−a, d, e)

(−b,−d, f)(−f,−e,−c). Then by Definition 3.10, ρ = (a, d, f,−e,−a, b,−d, e,−c)(c,−f,−b), a

contradiction since ρ is a cyclic permutation. If λ3 = (−d,−b, f), by Definition 3.10, ρ =

(. . . ,−e,−a, b, f, . . . ). Then λ(−f) 6= −e, so λ4 = (−f,−c,−e), resulting in λ = (a, b, c)(−a, d, e)

(−d,−b, f)(−f,−c,−e). Therefore, by Definition 3.10, ρ = (a, d,−b, c,−e,−a, b, f,−c)(e,−f,−d),

another contradiction since ρ is a cyclic permutation. Therefore, we cannot have −d ∈ λ3 and

−e ∈ λ4.

Hence, there is no rotation ρ such that CM (Z13, ρ) produces only 3-gons. �
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We just showed that no Cayley map embedding of K13 generates only 3-gons, meaning it cannot

have all multiplicity one 3-cycles. Now we need to show that it also cannot have thirty-nine 3-gons

and three 13-gons.

Theorem 7.2. No Cayley map embedding of K13 produces thirty-nine 3-gons and three 13-gons.

Proof. Suppose CM (Z13, ρ) generates thirty-nine 3-gons and three 13-gons. By Corollary 5.18 and

Lemma 5.19, λ must have three factors λi such that |λi| = 3 and mult(λi) = 1 for i = 1, 2, 3 and

three factors λk such that |λk| = 13
13 = 1 and mult(λk) = 13 for k = 4, 5, 6. There are 12 elements in

ρ, which we will call a, b, c, d, e, f,−a,−b,−c,−d,−e,−f . By Lemma 5.3, there can be no inverse

elements within any λi, so let λ1 = (a, b, c).

If λ4 = (−a), λ5 = (−b), and λ6 = (−c), then by definition 3.10, ρ = (a,−a, b,−b, c,−c), a

contradiction since ρ is not a 6-cycle. Now suppose −a ∈ λ2, λ4 = (−b), and λ5 = (−c). Without

loss of generality, −a, d, e ∈ λ2. By Lemma 5.7, either λ6 = (−d) and −e ∈ λ3 or λ6 = (−e) and

−d ∈ λ3. Either way, this means f,−f ∈ λ3, a contradiction by Lemma 5.3.

Therefore, a maximum of one of −a, −b, and −c can be in a 1-cycle. By Lemma 5.7, no two

of −a, −b, and −c can be in the same 3-cycle. Thus, suppose −a ∈ λ2, −b ∈ λ3, and λ4 = (−c).

Without loss of generality, let λ2 = (−a, d, e). This gives us λ = (a, b, c)(−a, d, e)λ3(−c)λ5λ6 where

−b ∈ λ3.

First suppose −d ∈ λ3, which means λ5 = (−e) by Lemma 5.3. Without loss of generality, let f ∈

λ3 meaning λ6 = (−f) by Lemma 5.3. Thus, we have λ = (a, b, c)(−a, d, e)λ3(−c)(−e)(−f) where

−b,−d, f ∈ λ3. By Definition 3.10, ρ = (. . . ,−d, e,−e,−a, b, . . . ). Since ρ is not a 5-cycle, λ(−b) 6=

−d, resulting in λ3 = (−b, f,−d). However, then ρ = (a, d,−b, c,−c)(b, f,−f,−d, e,−e,−a), a

contradiction since ρ is a cyclic permutation.

Now suppose −e ∈ λ3, which means λ5 = (−d) by Lemma 5.3. Without loss of generality, let

f ∈ λ3 meaning λ6 = (−f) by Lemma 5.3. Thus, we have λ = (a, b, c)(−a, d, e)λ3(−c)(−d)(−f)

where −b,−e, f ∈ λ3. By Definition 3.10, ρ = (. . . ,−e,−a, b, . . . ), so λ(−b) 6= −e since ρ is not a

3-cycle. Thus, λ3 = (−b, f,−e). By Definition 3.10, ρ = (a, d,−d, e,−b, c,−c)(b, f,−f,−e,−a), a

contradiction since ρ is a cyclic permutation.

Hence, there is no λ for CM (Z13, ρ) that generates thirty-nine 3-gons and three 13-gons �

Now we find the genus of a best possible Cayley map embedding of K13.
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Theorem 7.3. A best possible Cayley map embedding of K13 generates thirty-nine 3-gons, one

13-gon, and one 26-gon and is on a 13-holed torus.

Proof. The only group to consider for K13 is Z13. By Theorem 5.14, a Cayley map embedding of K13

by CM (Z13, ρ) with a (4, 0)-permutation λ would be best possible, and in fact optimal by Theorem

5.22 since it must have four 3-cycles of multiplicity 1 and thus generate only 3-gons. However, this

is not possible by Theorem 7.1. The next best λ is a (3, 3)-permutation, but by Theorem 7.2, we

cannot have three 3-cycles of multiplicity 1 and three 1-cycles, as this would generate thirty-nine

3-gons and three 13-gons. The next best λ is a (3, 2)-permutation, which is achieved by the Cayley

map CM (Z13, (1, 3, 7, 5, 4, 10, 11, 2, 12, 8, 6, 9)) with λ = (1, 8, 4)(3, 11, 12)(7, 9, 10)(5, 6)(2). This is

a best possible Cayley map embedding of K13, generating forty-one faces – thirty-nine 3-gons, one

13-gon, and one 26-gon – and with resulting Euler characteristic χ = −24 and genus g = 13. Hence,

a best possible embedding is on a 13-holed torus. �

8. Best Possible Cayley Map for K17

The optimal genus of an embedding of K17 is γ(K17) = 16 by Theorem 3.3. However, it is

impossible to achieve this optimal embedding of K17 using a Cayley map. We will show that a best

possible Cayley map embedding of K17 is on an 18-holed torus rather than the optimal 16-holed

torus.

Theorem 8.1. A best possible Cayley map embedding of K17 generates sixty-eight 3-gons and

seventeen 4-gons and is on an 18-holed torus.

Proof. The only group we must consider for K17 is Z17. By Theorem 5.14, a Cayley map em-

bedding of K17 by CM (Z17, ρ) with a (5, 1)-permutation λ would be best possible, but such

a λ is not possible by Corollary 5.16. The next best λ is a (5, 0)-permutation, achieved by

CM (Z17, (1, 7, 13, 12, 15, 9, 16, 4, 11, 2, 14, 8, 6, 10, 3, 5)) with λ = (1, 4, 12)(10, 13, 11)(14, 5, 15)(9, 6, 2)

(16, 7, 3, 8). This best possible Cayley map embedding of K17 generates sixty-eight 3-gons and sev-

enteen 4-gons for a total of eighty-five faces. The resulting Euler characteristic is χ = −34 with

genus g = 18, so a best possible embedding of K17 is on an 18-holed torus. �

9. Optimal Embeddings for Complete Graphs K12k+7

For complete graphs Kn, where n = 1 mod 3, all nonzero elements can be separated into groups

of three. If the elements within each of these groups of three add to zero and can be arranged into
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3-cycles of λ that define a cyclic ρ, then the graph can be embedded optimally by a Cayley map, per

Theorem 5.22. However, as seen in previous sections, not all complete graphs of this form actually

achieve an optimal embedding. In this section, we narrow our search for optimal embeddings of

complete graphs Kn with n = 1 mod 3 to those where n = 12m + 7 for nonnegative integers m.

Optimal embeddings were indeed found for complete graphs of the form K12m+7 for 0 ≤ m ≤ 9.

Table 1. Cayley Map Embeddings of Complete Graphs K12m+7

K12m+7 Cayley Map Faces Genus
Optimal

Genus

K7

CM (Z7, (1, 5, 4, 6, 2, 3))

λ = (1, 2, 4)(3, 6, 5)

14

3-gons
1 1

K19

CM (Z19, (1, 6, 15, 7, 17, 16, 5, 18, 2, 9, 13, 14, 11, 4, 10, 12, 8, 3))

λ = (1, 2, 16)(3, 5, 11)(4, 7, 8)(6, 14, 18)(9, 12, 17)(10, 13, 15)

114

3-gons
20 20

K31

CM (Z31, (1, 13, 27, 24, 8, 25, 20, 22, 10, 26, 6, 14, 18, 19, 9, 29, 28, 4,

17, 23, 16, 21, 12, 30, 2, 11, 5, 15, 7, 3))

λ = (1, 2, 28)(3, 4, 24)(5, 6, 20)(7, 8, 16)(9, 10, 12)(11, 22, 29)

(13, 19, 30)(14, 23, 25)(15, 21, 26)(17, 18, 27)

310

3-gons
63 63

K43

CM (Z43, (1, 19, 9, 35, 28, 30, 14, 39, 36, 8, 17, 37, 32, 12, 33, 24, 25,

29, 16, 38, 6, 23, 11, 5, 21, 31, 20, 26, 34, 10, 22, 27, 13, 41, 40, 4, 18,

42, 2, 15, 7, 3))

λ = (1, 2, 40)(3, 4, 36)(5, 6, 32)(7, 8, 28)(9, 10, 24)(11, 12, 20)

(13, 14, 16)(15, 30, 41)(17, 34, 35)(18, 29, 39)(19, 25, 42)(21, 27, 38)

(22, 31, 33)(23, 26, 37)

602

3-gons
130 130

K55

CM (Z55, (1, 19, 9, 23, 11, 5, 29, 39, 24, 50, 6, 27, 13, 43, 32, 41, 28, 34,

38, 18, 54, 2, 22, 47, 40, 16, 45, 36, 37, 20, 53, 52, 4, 21, 49, 44, 12, 25,

33, 35, 17, 51, 48, 8, 30, 42, 14, 46, 10, 26, 31, 15, 7, 3))

λ = (1, 2, 52)(3, 4, 48)(5, 6, 44)(7, 8, 40)(9, 10, 36)(11, 12, 32)

(13, 14, 28)(15, 16, 24)(17, 18, 20)(19, 37, 54)(21, 38, 51)(22, 35, 53)

(23, 41, 46)(25, 42, 43)(26, 39, 45)(27, 34, 49)(29, 31, 50)(30, 33, 47)

990

3-gons
221 221
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K67

CM (Z67, (1, 22, 65, 64, 4, 29, 39, 51, 21, 66, 2, 24, 11, 5, 25, 63, 60, 8,

26, 58, 10, 38, 42, 47, 32, 41, 49, 37, 16, 55, 18, 59, 52, 20, 62, 6, 33, 14,

31, 44, 27, 61, 56, 13, 36, 50, 23, 54, 43, 45, 46, 30, 12, 28, 57, 48, 34,

40, 17, 53, 19, 9, 35, 15, 7, 3))

λ = (1, 2, 64)(3, 4, 60)(5, 6, 56)(7, 8, 52)(9, 10, 48)(11, 13, 43)

(12, 18, 37)(14, 19, 34)(15, 20, 32)(16, 21, 30)(17, 23, 27)(22, 46, 66)

(24, 45, 65)(25, 47, 62)(26, 49, 59)(28, 51, 55)(29, 42, 63)(31, 50, 53)

(33, 40, 61)(35, 41, 58)(36, 44, 54)(38, 39, 57)

1474

3-gons
336 336

K79

CM (Z79, (1, 21, 77, 76, 4, 31, 70, 10, 43, 17, 71, 64, 22, 63, 24, 11, 5, 33,

69, 60, 28, 74, 6, 35, 49, 20, 78, 2, 23, 61, 27, 75, 72, 8, 25, 67, 14, 44, 50,

30, 65, 53, 36, 46, 51, 32, 66, 55, 39, 48, 52, 34, 47, 19, 9, 40, 16, 38, 56,

58, 59, 29, 73, 68, 13, 45, 18, 41, 57, 42, 54, 62, 26, 12, 37, 15, 7, 3))

λ = (1, 2, 76)(3, 4, 72)(5, 6, 68)(7, 8, 64)(9, 10, 60)(11, 13, 55)

(12, 14, 53)(15, 22, 42)(16, 24, 39)(17, 26, 36)(18, 27, 34)(19, 28, 32)

(20, 29, 30)(21, 59, 78)(23, 58, 77)(25, 62, 71)(31, 52, 75)(33, 51, 74)

(35, 50, 73)(37, 54, 67)(38, 57, 63)(40, 48, 70)(41, 56, 61)(43, 46, 69)

(44, 49, 65)(45, 47, 66)

2054

3-gons
475 475

K91

CM (Z91, (1, 27, 13, 49, 57, 24, 79, 68, 51, 69, 30, 86, 6, 38, 77, 64, 65,

46, 66, 48, 20, 45, 19, 9, 44, 54, 70, 29, 89, 88, 4, 32, 85, 80, 12, 36, 78,

14, 52, 22, 73, 25, 71, 28, 87, 84, 8, 42, 55, 67, 33, 74, 23, 11, 5, 35, 82,

10, 47, 56, 61, 39, 53, 59, 63, 43, 18, 40, 17, 50, 21, 75, 60, 62, 41, 58,

34, 83, 76, 16, 37, 81, 72, 26, 90, 2, 31, 15, 7, 3))

λ = (1, 2, 88)(3, 4, 84)(5, 6, 80)(7, 8, 76)(9, 10, 72)(11, 12, 68)

(13, 14, 64)(15, 16, 60)(17, 23, 51)(18, 25, 48)(19, 26, 46)(20, 28, 43)

(21, 29, 41)(22, 30, 39)(24, 33, 34)(27, 65, 90)(31, 62, 89)(32, 63, 87)

(35, 61, 86)(36, 67, 79)(37, 70, 75)(38, 59, 85)(40, 69, 73)(42, 57, 83)

(44, 56, 82)(45, 66, 71)(47, 54, 81)(49, 55, 78)(50, 58, 74)(52, 53, 77)

2730

3-gons
638 638
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K103

CM (Z103, (1, 26, 101, 100, 4, 37, 82, 33, 99, 96, 8, 44, 17, 57, 73, 54, 21,

58, 23, 11, 5, 39, 90, 14, 55, 75, 77, 78, 38, 91, 80, 35, 97, 92, 12, 50, 74,

56, 22, 94, 10, 42, 85, 29, 79, 36, 95, 88, 16, 46, 63, 25, 102, 2, 28, 83, 32,

93, 84, 30, 87, 72, 81, 34, 98, 6, 41, 89, 76, 59, 67, 43, 61, 71, 51, 64, 69,

47, 18, 60, 24, 53, 65, 40, 86, 27, 13, 52, 20, 48, 62, 68, 45, 66, 70, 49,

19, 9, 31, 15, 7, 3))

λ = (1, 2, 100)(3, 4, 96)(5, 6, 92)(7, 8, 88)(9, 10, 84)(11, 12, 80)

(13, 14, 76)(15, 16, 72)(17, 27, 59)(18, 29, 56)(19, 30, 54)(20, 32, 51)

(21, 33, 49)(22, 34, 47)(23, 35, 45)(24, 36, 43)(25, 38, 40)(26, 78, 102)

(28, 77, 101)(31, 81, 94)(37, 70, 99)(39, 69, 98)(41, 68, 97)(42, 71, 93)

(44, 67, 95)(46, 73, 87)(48, 75, 83)(50, 65, 91)(52, 64, 90)(53, 74, 79)

(55, 62, 89)(57, 63, 86)(58, 66, 82)(60, 61, 85)

3502

3-gons
825 825

K115

CM (Z115, (1, 29, 113, 112, 4, 30, 109, 104, 12, 53, 70, 75, 50, 68, 77,

54, 20, 63, 24, 107, 100, 16, 60, 73, 46, 94, 35, 93, 37, 101, 88, 42, 102,

14, 51, 18, 65, 25, 58, 80, 59, 22, 57, 82, 64, 78, 56, 21, 67, 26, 111, 108,

8, 32, 66, 76, 52, 72, 44, 99, 84, 86, 87, 43, 95, 34, 83, 91, 39, 105, 96,

79, 85, 89, 41, 103, 92, 38, 106, 10, 49, 81, 61, 23, 11, 5, 45, 98, 19, 9,

47, 97, 33, 90, 40, 110, 6, 36, 17, 62, 74, 48, 69, 27, 13, 55, 71, 28, 114,

2, 31, 15, 7, 3))

λ = (1, 2, 112)(3, 4, 108)(5, 6, 104)(7, 8, 100)(9, 10, 96)(11, 12, 92)

(13, 14, 88)(15, 16, 84)(17, 19, 79)(18, 33, 64)(20, 34, 61)(21, 35, 59)

(22, 37, 56)(23, 38, 54)(24, 39, 52)(25, 40, 50)(26, 41, 48)(27, 42, 46)

(28, 43, 44)(29, 87, 114)(30, 89, 111)(31, 86, 113)(32, 91, 107)

(36, 85, 109)(45, 75, 110)(47, 77, 106)(49, 76, 105)(51, 78, 101)

(53, 74, 103)(55, 73, 102)(57, 80, 93)(58, 82, 90)(60, 71, 99)

(62, 70, 98)(63, 72, 95)(65, 68, 97)(66, 81, 83)(67, 69, 94)

4370

3-gons
1036 1036

Supposing this pattern of the existence of optimal embeddings continues for all complete graphs

of the form K12m+7, we raise the following conjecture.

Conjecture 9.1. For all m ≥ 0, there is a cyclic rotation ρ of {1, 2, 3, . . . , 12m + 6} such that

CM (Z12m+7, ρ) is an optimal embedding of K12m+7.

See Section 13, Appendix C, for the Python code developed to support this conjecture.
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10. General Bounds for Cayley Map Embeddings of Complete Graphs

As we have seen, it is not always possible to embed a complete graph on the optimal surface

using a Cayley map. Below, we come up with some bounds to narrow down on how well Cayley

map embeddings can do within their constraints. First we find an upper bound on the number of

faces a Cayley map embedding of a complete graph with a prime number of vertices can generate.

Theorem 10.1. For a complete graph Kp with prime p, a Cayley map CM (Zp, ρ) generates at

most p− 1 + (p− 3)bp−13 c faces.

Proof. Let CM (Zp, ρ) be a Cayley map for for the complete graph Kp with prime p. Let λ be a

(bp−13 c, p− 1− 3bp−13 c)-permutation, so by Theorem 5.14, CM (Zp, ρ) is a best possible Cayley map

embedding of Kp. By Theorem 5.11, since we have bp−13 c multiplicity 1 cycles and p− 1− 3bp−13 c

multiplicity p cycles, λ generates pbp−13 c + p − 1 − 3bp−13 c = p − 1 + (p − 3)bp−13 c faces. Since

CM (Zp, ρ) is the best possible Cayley map embedding of Kp, no Cayley map embedding of Kp can

generate more than p− 1 + (p− 3)bp−13 c faces. �

Now we translate this upper bound on the number of faces into a lower bound for the genus.

Theorem 10.2. For a complete graph Kp with prime p, an optimal Cayley map CM (Zp, ρ) embeds

Kp on a surface with genus g ≥ dp−32 (p−22 − b
p−1
3 c)e.

Proof. Let CM (Zp, ρ) be a Cayley map for for the complete graph Kp with prime p. By definition,

Kp has p vertices and p(p−1)
2 edges. For a Cayley map CM (Zp, ρ) that generates F faces, we have

Euler characteristic χ = p − p(p−1)
2 + F . By Theorem 10.1, CM (Zp, ρ) generates a maximum of

p− 1 + (p− 3)bp−13 c faces, so χ ≤ p− p(p−1)
2 + p− 1 + (p− 3)bp−13 c = 2p− 1− p(p−1)

2 + (p− 3)bp−13 c.

Using the genus formula and transitivity, we have 2p− 1− p(p−1)
2 + (p− 3)bp−13 c ≥ 2− 2g for genus

g. Solving for g, we find that g ≥ −p + 3
2 + p(p−1)

4 − p−3
2 b

p−1
3 c = p−3

2 (p−22 − b
p−1
3 c). Since g must

be an integer, g ≥ dp−32 (p−22 − b
p−1
3 c)e. �

For complete graphs Kp where prime p = 3k + 2 for some integer k, we can improve the bound

on the number of faces a Cayley map embedding can generate.

Theorem 10.3. For a complete graph Kp with prime p, such that p = 3k + 2 for some integer k,

a Cayley map CM (Zp, ρ) generates at most p(p−2)
3 faces.
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Proof. Let CM (Zp, ρ) be a Cayley map for for the complete graph Kp with prime p = 3k+2 for some

integer k. By definition, ρ is a cyclic permutation of Zp−{0}, so we have |Zp−{0}| = p−1 = 3k+1

elements in ρ and the cycles of λ. By Theorem 5.14, CM (Zp, ρ) is best possible when λ is a

(bp−13 c, p − 1 − 3bp−13 c) = (k, 1)-permutation. However, a (k, 1)-permutation is not possible by

Corollary 5.16. By Corollary 5.13, the next best λ is a (k, 0)-permutation. Then by Theorem 5.11,

CM (Zp, ρ) generates pbp−13 c − p+ p = pbp−13 c faces. By substitution, bp−13 c = b3k+1
3 c = 3k

3 = p−2
3 ,

so pbp−13 c = p(p−2)
3 faces is the most faces that can be generated. �

Just as before, we now translate the bound on the number of faces into a bound on the genus of

Cayley map embeddings of complete graphs with prime p = 3k + 2 vertices.

Theorem 10.4. For a complete graph Kp with prime p, such that p = 3k + 2 for some integer k,

a best possible Cayley map CM (Zp, ρ) embeds Kp on a surface with genus g ≥ dp(p−5)12 + 1e.

Proof. Let CM (Zp, ρ) be a Cayley map for for the complete graph Kp with prime p = 3k + 2

for some integer k. By definition, Kp has p vertices and p(p−1)
2 edges. Hence, for a Cayley map

CM (Zp, ρ) that produces F faces, the Euler characteristic is χ = p− p(p−1)
2 + F . Since CM (Zp, ρ)

for p = 3k+ 2 can generate at most p(p−2)
3 faces by Theorem 10.3, we have χ ≤ p− p(p−1)

2 + p(p−2)
3 .

Using the genus formula and transitivity, we get p− p(p−1)
2 + p(p−2)

3 ≥ 2− 2g for genus g. Solving

for g, we get g ≥ 1 − p
2 + p(p−1)

4 − p(p−2)
6 = p2−5p+12

12 = p(p−5)
12 + 1. Since g must be an integer,

g ≥ dp(p−5)12 + 1e. �

11. Appendix A

Table 2 compares the optimal genus with the genus of a best possible Cayley map embedding

for each complete graph discussed in this paper.

12. Appendix B

The following lemmas have not been used in this paper, but may prove useful in further research

on best possible Cayley map embeddings of complete graphs.

Lemma 12.1. Suppose H is an abelian group. For any Cayley map CM (H, ρ), if λ1 is a k-cycle

in λ that generates k-gons, no k − 1 elements in λ1 can add to 0.

Proof. Suppose λ1 is a k-cycle in λ that generates k-gons and k − 1 elements in λ1 add to 0. Let

x1, x2, . . . , xk ∈ λ1 and x1 + x2 + · · · + xk−1 = 0. For λ1 to generate k-gons, we know x1 + x2 +
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Table 2. Genus of Cayley Map Embeddings of Complete Graphs

Complete Graph Kn Best Cayley Map Genus g Optimal Genus γ(Kn) g − γ(Kn)
K4 0 0 0
K5 1 1 0
K6 1 1 0
K7 1 1 0
K11 10 5 5
K13 13 8 5
K17 18 16 2
K19 20 20 0
K31 63 63 0
K43 130 130 0
K55 221 221 0
K67 336 336 0
K79 475 475 0
K91 638 638 0
K103 825 825 0
K115 1036 1036 0

· · ·+ xk−1 + xk = 0. By substitution, we get xk = 0, which is not possible by the nature of Cayley

maps. Hence, no k − 1 elements in λ1 can add to 0. �

Lemma 12.2. Suppose H is an abelian group, X = {x1, x2, . . . , xn} is a closed subset of H, and

ρ is a cyclic permutation of X. For the Cayley Map CM (H, ρ), if λ1 = (x1, x2, . . . , xk) for some

even integer k < n
2 , then λ2 6= (−x1,−x2, . . . ,−xk).

Proof. We prove the contrapositive. Let λ1 = (x1, x2, . . . , xk) and λ2 = (−x1,−x2, . . . ,−xk) for

some even k < n
2 . We see that ρ(x1) = −x2, ρ(−x2) = x3, . . . , ρ(−xk) = x1 and ρ(−x1) = x2,

ρ(x2) = −x3, . . . , ρ(xk) = −x1 resulting in ρ = (x1,−x2, x3, . . . ,−xk)(−x1, x2,−x3, . . . , xk), which

contradicts ρ being a cyclic permutation. Therefore, if λ1 = (x1, x2, . . . , xk) for some even integer

k < n
2 , then λ2 6= (−x1,−x2, . . . ,−xk). �

Lemma 12.3. For any Cayley Map CM (Zn, ρ) where n is odd, if λ has at least two factors λi and

some |λj | = 1, then there must exist a λk 6= λj such that mult(λk) 6= 1.

Proof. Let λ have k ≥ 2 factors and λ1 have only one element, x1, such that |λ1| = 1. Since n is odd

and |λ| = n− 1, every element of λ has a unique inverse element such that Sum(λ) = 0. Suppose

mult(λi) = 1 for all i ∈ {2, . . . , k}, meaning Sum(λi) = 0 for all i. Hence, Σk
i=2Sum(λi) = 0.

However, Sum(λ) = Σk
i=1Sum(λi) = Sum(λ1) + Σk

i=2Sum(λi) = 0. By substitution, Sum(λ1) =
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x1 = 0. However, by definition, x1 6= 0, a contradiction. Therefore, mult(λi) 6= 1 for some

i ∈ {2, . . . , k}. �

Lemma 12.4. For a Cayley map CM (Zn, ρ) with odd n, if λ1 = (x) and λ2 = (y) are the only two

non-multiplicity 1 factors of λ, then ρ = (x, y) is a 2-cycle.

Proof. Since n is odd, Sum(λ) = 0. Since λ1 = (x) and λ2 = (y) are the only non-multiplicity 1

factors of λ, Sum(λ) − λ1 − λ2 = Sum(λ) − x − y = 0. By substitution, −x − y = 0 so y = −x.

Thus, λ1 = (x) and λ2 = (−x), which results in ρ = (x,−x) such that ρ is a 2-cycle. �

13. Appendix C

Below is the Python code used to generate permutations λ and ρ of optimal Cayley map em-

beddings for complete graphs of the form K12k+7 for k > 0. The code can more generally be used

for complete graphs Kn where n = 1 mod 3 and n > 7. Note that this code does not generate all

possible lambdas of optimal Cayley map embeddings, only those with 3-cycles of the form (i, j, k)

such that i < j < k. It is also worth noting that as the value of n increases, the time it takes to

run the program quickly increase past the reasonable capacity of a standard computer.

# Looks f o r opt imal Cayley map embeddings o f complete

# graphs Kn f o r n = 12 k+7 f o r nonnegat ive i n t e g e r s k

# Cayley map i s opt imal i f i t g e n e r a t e s on ly 3−gons

# So lambda w i l l have numTriples order one 3−c y c l e s

# Number o f v e r t i c e s n w i l l change depending on the graph

n = 43

numTriples = (n−1)/3

# Returns True i f k i s in a t r i p l e in a L i s t

def s e a r c h L i s t ( aList , k ) :

i f len ( aL i s t ) == 0 :

return False
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return ( k in aL i s t [ 0 ] ) or s e a r c h L i s t ( aL i s t [ 1 : ] , k )

# Finds rho us ing rho ( x)=lambda(−x ) f o r p o t e n t i a l lambda

# I f rho i s not c y c l i c , on ly one c y c l e o f rho i s found

def createRho ( potentialLambda ) :

# S t a r t rho wi th e lement x = 1

rho = [ ]

x = 1

rho . append ( x )

# A v a l i d rho w i l l be a c y c l e o f n−1 e lements

for a in range (n−1):

# Search potent ia lLambda f o r the t r i p l e c o n t a i n i n g element −x

# The element a f t e r −x in the t r i p l e f o l l o w s x in rho

for i in range ( len ( potentialLambda ) ) :

i f (n − x ) in potentialLambda [ i ] :

z = ( potentialLambda [ i ] . index (n − x ) + 1) % 3

x = potentialLambda [ i ] [ z ]

# Return rho when i t i s about to c y c l e back to 1

i f x == 1 and len ( rho ) != 1 :

return ( rho )

rho . append ( x )

return ( rho )

# Returns True i f rho i s indeed c y c l i c wi th n−1 e lements

def isCayleyMap ( rho1 ) :

return ( len ( rho1 ) == n−1)
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# I t e r a t i v e l y g e n e r a t e s p o t e n t i a l lambdas o f order one t r i p l e s

def genLambda ( potentialLambda ) :

x = 1

y = 2

# R e s t r i c t t r i p l e s to the form ( i , j , k ) where i<j<k<n

# Note : t h i s means not a l l lambdas w i l l be generated

while potentialLambda [ 0 ] [ 1 ] < potentialLambda [ 0 ] [ 2 ] :

# P o t e n t i a l lambda i s ” f u l l ” ( has a l l e lements < n)

i f len ( potentialLambda ) == numTriples :

# Pr in t s p o t e n t i a l lambda and rho i f rho i s c y c l i c

i f isCayleyMap ( createRho ( potentialLambda ) ) :

print ( potentialLambda )

print ( createRho ( potentialLambda ) )

# Backtrack to f i n d next p o t e n t i a l lambda

potentialLambda . pop ( )

temp = potentialLambda . pop ( )

x = temp [ 0 ]

y = temp [ 1 ] + 1

# F i l l potent ia lLambda with order one t r i p l e s

for i in range (x , n ) :

i f not s e a r c h L i s t ( potentialLambda , i ) :

for j in range (y , n ) :

i f not s e a r c h L i s t ( potentialLambda , j )

and not s e a r c h L i s t ( potentialLambda , i ) and j > i :

k = (n − i − j ) % n

i f k > j and not s e a r c h L i s t ( potentialLambda , k )

30



and not s e a r c h L i s t ( potentialLambda , i )

and not s e a r c h L i s t ( potentialLambda , j ) :

potentialLambda . append ( [ i , j , k ] )

# Backtrack i f i cou ld not be added to a t r i p l e

i f not s e a r c h L i s t ( potentialLambda , i ) :

temp = potentialLambda . pop ( )

x = temp [ 0 ]

y = temp [ 1 ] + 1

# potent ia lLambda cannot be empty

i f len ( potentialLambda ) == 0 :

z = (n − x − y ) % n

potentialLambda . append ( [ x , y , z ] )

x += 1

y = x+1

break

return

# I t e r a t i v e l y , the f i r s t t r i p l e s t a r t s as f i r s t T r i p l e

# A l t e r n a t i v e l y , you can pass any p o t e n t i a l lambda to genLambda and

# i t w i l l cont inue i t e r a t i n g from t h e r e on

f i r s t T r i p l e = [ [ 1 , 2 , n−3] ]

lambdas = genLambda ( f i r s t T r i p l e )
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