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Chapter 1

Introduction

The scattering of light by small particles is a common phenomenon. It is

on display throughout the daily lives of most individuals. For example,

Rayleigh scattering of sunlight by particles in Earth’s atmosphere is the mech-

anism behind the sky’s blue color[1]. Waves of light incident on a particle can

be scattered elastically or inelastically. In the former case, these waves do not

transfer any energy to the scatterer, while in the latter case they do. Raman

scattering, which is an example of inelastic scattering, is commonly used by

chemists to determine the composition of a substance. Certain wavelengths

of light are scattered inelastically by different elements and compounds in

higher proportions than other wavelengths. Light scattered inelastically by

a substance can be collected and resolved into its constituent wavelengths,

and the proportions in which each wavelength is present can be determined.

The particular wavelengths which a substance scatters in high proportions

are unique to that substance, so the inelastic scattering from an unknown

substance can be compared to scattering by known substances, and the un-

known substance can be identified based on the closest match[2]. Rayleigh

scattering, such as that mentioned previously, is elastic scattering which oc-

curs when the dimensions of the scatterer are far less than the wavelength of

the incident light. Elastic scattering by particles with dimensions on the order

of the wavelength of the incident light is called Mie scattering[3]. During Mie

scattering, which is the focus of this thesis, the incident light scatters off of a
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scatterer at all angles, but is directed largely in the forward direction, that is

at angles less than 90o with respect to the optical axis, which is the axis along

which light (in this case, the beam incident on the scatterer) travels through

a system. A cross section of the Mie scattered intensity pattern in a plane

orthogonal to the optical axis exhibits a characteristic pattern of ripples rep-

resenting regions of high and low intensity, which can be seen in figure 1.1.

The spacing of these ripples is dependent on the refractive indices of both the

scatterer and its surrounding medium, the wavelength of the incident light,

and the size of the scatterer. Figure 1.1 is an image, called a scattergram,

depicting the intensity of light scattered elastically by a polystyrene bead at

angles up to 55o with respect to the optical axis. The bead had a diameter of

approximately 5µm and the light had a wavelength of 532nm. The center of

a scattergram represents an angle of 0o with respect to the optical axis, while

points on the scattergram which are increasingly farther from the center rep-

resent increasing scattering angles, θ. The azimuthal angle, φ, varies with

rotation about the optical axis, which is normal to the center of the scatter-

gram. This coordinate system is shown in relation to a scattergram in figure

1.2. The center of experimental scattergrams is typically dark because in most

cases the majority of light incident on a scatterer passes through without de-

viating, and a mask or other device is often used to obstruct this unscattered

light from reaching the detector and causing overexposure, artifacts, or other

undesirable effects.

Mie scattering can be used to obtain morphological information about a

specimen. Most commonly, light with a known wavelength is scattered by a

specimen with a known refractive index which is surrounded by a medium

with a known refractive index, and the irradiance of light at each scattering
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angle is recorded. Experimental scattering data can be compared to simu-

lated scattering for scatterers with a range of diameters, and the size corre-

sponding to the simulated scattering which is most similar to the experimen-

tal data used as an estimate for the size of the specimen.

FIGURE 1.1: A scattergram depicting the irradiance of light
with a wavelength of 532nm scattered at angles out to 55o by a
5µm polystyrene bead surrounded by air. Deep blue indicates
the lowest irradiance and crimson indicates the highest.

Both theoretical and empirical scattergrams have been published in the

existing literature surrounding angular scattering theory and its applications,

a review of which is provided in Chapter 2. All of the scattergrams of for-

ward scattered light exhibit the characteristic pattern of amplitude maxima

and minima which appear as concentric ripples, but vary due to differences

in the wavelength and polarization of the incident light, the refractive in-

dices of the scatterer and its surrounding medium, and the diameter of the

scatterer. For instance, an increase in scatterer size or the refractive index

of the medium surrounding the scatterer leads to a decrease in the angular
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FIGURE 1.2: Spherical and cartesian coordinate systems in rela-
tion to a scattergram. A spherical scatterer is shown at the ori-
gin, and the excitation beam propagates along the z-axis, which
is identical to the optical axis and is normal to the center of the
scattergram. The center of the scattergram represents a scatter-
ing polar angle θ of 0o, and points which are increasingly far-
ther from the center of the scattergram represent increasing θ.
The azimuthal angle, φ, is measured from the x-axis and varies
with rotation about the z-axis.

spacing between ripples and therefore the presence of more ripples within

the same angle range. Mie scattering patterns from a given wavelength of

incident light are more sensitive to changes in scatterer size than to changes

in refractive index. Chapter 2 will discuss how Mie scattering patterns can
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FIGURE 1.3: Top left: Scattering by a 4µm polystyrene bead,
published by Cottrell, et al.[4]. Top right: Scattering by
a polystyrene bead with estimated diameter of 4.4µm, pub-
lished by Smith and Berger[5]. Bottom left: Scattering by a
polystyrene bead with estimated diameter of 5µm, published
by Cannaday, et al.[6]. Bottom right: Simulated scattering by
a 6µm polystyrene sphere, published by Smith in his doctoral
thesis[7]. All scattergrams depict the irradiance of light scat-
tered at various angles with respect to the optical axis. Approx-
imate axes of mirror-symmetry are shown on three of the scat-
tergrams with dotted lines. Insets show portions of the scatter-
grams in which the asymmetry is particularly visible.



6

be analyzed in order to obtain information about the scatterer.

A collection of scattergrams published in existing literature, from spher-

ical scatterers ranging in diameter from approximately 4µm to 6µm, is pre-

sented in figure 1.3. Some of the scattergrams, both theoretically produced

and empirically obtained, exhibit azimuthal asymmetry, even though they

depict scattering by a spherical (and therefore symmetrical) specimen. In

two quadrants of the scattergrams, the scattered irradiance falls to a lower

value between ripples than in the other two. This gives the ripples an ellipti-

cal appearance, but they are not elongated to a measurable degree. The two

axes over which the scattergram is symmetrical are orthogonal and lie on the

plane of the scattergram, as shown by dashed lines in figure 1.3.

The scattergram at the top left of figure 1.3 was published by Cottrell et

al. and depicts the irradiance across a range of angles of light with a wave-

length of 457.9nm scattered by a fluorescent, polystyrene microsphere with

a nominal diameter of 4µm surrounded by distilled water[4]. Over the rel-

atively small angle range included in this scattergram, from approximately

0o to 18o, there is no clear asymmetry exhibited which is not attributable to

noise or artifacts from the mask. However, this is likely due to the relatively

small angle range depicted because, as can be seen in the other scattergrams,

the asymmetry is more pronounced at higher angles. The scattergram at the

top right was published by Smith and Berger and depicts the irradiance over

a range of angles from approximately 0o to 45o of light with a wavelength

of 785nm scattered by a polystyrene bead with an estimated diameter of

4.372µm surrounded by deionized water[5]. Asymmetry is clearly visible

in this scattergram, particularly in the areas highlighted in the figure. The

scattergram in the bottom left was published by Cannaday et al. and de-

picts scattering over a range of angles from approximately 0o to 60o of light

with wavelength 785nm by a polystyrene bead with an estimated diameter
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of 4.94µm suspended in water[6]. Asymmetry is clearly visible in this scatter-

gram as well. Finally, the scattergram in the bottom right was published by

Zachary Smith in his doctoral thesis for the University of Rochester and de-

picts simulated scattering of x-polarized (horizontally polarized) light over a

range of angles from approximately 0o to 60o by a polystyrene bead with a

diameter of 6µm[7]. Asymmetry is also visible in this scattergram.

If this asymmetry were only present in experimental scattergrams or in

the scattergrams from a single group of researchers, it could be readily at-

tributed to experimental conditions. However, Mie theory, which mathemat-

ically models the electric and magnetic fields of Mie scattered light based on

the incident field, predicts that even an idealized plane wave1 of light will

be scattered asymmetrically by a homogeneous sphere centered at the ori-

gin. This indicates that the asymmetry is a feature inherent to Mie scattering,

which is unexpected given the symmetry of the described scenario. Every-

thing in the Mie theory model is assumed to be perfectly symmetrical about

the opical axis except for the incident electromagnetic wave itself, which is

polarized in one direction which is orthogonal to the optical axis. This thesis

will explain how the asymmetry in Mie scattering patterns is related in the-

ory to the polarization of the incident light and demonstrate this relationship

empirically.

1.1 Outline of thesis

The outline of this thesis is as follows:

Chapter 2 provides a brief overview of angular scattering theory and ex-

isting research in the field of angular scattering. Measurements of the light

scattered by particles can be used to estimate the size of the scatterers, and

1The plane wave model of light assumes uniform maximum amplitude and irradiance
across the light’s entire extent, and wavefronts are assumed to be planes to which the direc-
tion of propagation is normal.
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this technique has been implemented to estimate the size of organelles within

single cells.

Chapter 3 presents the mathematical models of Mie scattering developed

by Gustav Mie and others and explains why they predict that light scattered

by a perfectly spherical particle will be asymmetrical. This arises as a result

of the polarization of the incident light, and theory predicts that a rotation in

the polarization will lead to a corresponding rotation in the features of the

scattering pattern.

Chapter 4 presents experimentally obtained scattergrams depicting scat-

tering by polystyrene beads, which were recorded using an angular scatter-

ing microscope. The polarization of the incident light was rotated using a

half-wave plate and a linear polarizer, and the irradiance of scattered light

over a range of angles was recorded. Experimental scattergrams depicting

scattering of light with three different polarization states were then fit to a

theoretical model, and the effects of changing polarization on the fits was

tested.

To end, Chapter 5 provides the conclusion, discusses the significance of

this research, and provides suggestions for further experiments.
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Chapter 2

Angular scattering overview and its

applications

2.1 Mie theory

When light is incident on a spherical particle with a diameter on the order of

the wavelength of light and a different index of refraction than its surround-

ing medium, the light scatters off of the particle at all angles, as mentioned

in Chapter 1. The electric and magnetic fields of the scattered light can be

modeled by solutions to Maxwell’s equations, which are a set of differential

equations that concisely encompass most of modern electromagnetic theory.

Gustav Mie, in 1908, published extensive and rigorous work in Annalen der

Physik which provided exact solutions to Maxwell’s equations, in the form of

infinite sums, for the case of a linearly-polarized plane wave incident on a

perfectly spherical scatterer[8]. These solutions, for the particular case men-

tioned, form the basis of Mie theory.

Mie scattering patterns vary as a result of factors including the refractive

indices of the scatterer and the surrounding medium, the wavelength and po-

larization of incident light, and the diameter of the scatterer. Mie scattering

is particularly sensitive to size changes in the scatterer. Larger scatterers, as

compared to smaller scatterers, produce scattering patterns with less angular



10

FIGURE 2.1: Simulated scattergrams generated using a Mie the-
ory model for beads with diameters of, left to right, 2µm, 5µm,
and 8µm. The wavelength and polarization of the incident light
and the refractive indices of the scatterer and its surrounding
medium are identical for all three scattergrams. Note that fewer
local irradiance maxima are visible within the same angle range
in scattergrams from spheres with with increasingly smaller di-
ameters. The colormap used is shown to the right of the scat-
tergrams, where dark blue indicates the lowest scattered irradi-
ance and crimson indicates the highest.

separation between local irradiance maxima. This effect is shown in figure

2.1, which depicts simulated scattergrams generated based on a generaliza-

tion of Mie theory which accounts for a focused Gaussian excitation beam

(this generalized Mie theory is explained in Section 2.3.1). The simulated

scatterers were homogeneous spheres with three different diameters, 2µm,

5µm, and 8µm. The simulated excitation beam was linearly polarized in the

horizontal direction, and it had a wavelength of 532nm and a beamwaist at

the scatterer of 10µm. The scatterers had a refractive index of 1.57826 and

were surrounded by a medium with a refractive index of 1.00029. The an-

gular spacing between local irradiance maxima decreases as the size of the

scatterer increases.
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2.2 Polarization

Electromagnetic waves, including light, consist of oscillating electric and mag-

netic fields. The two are orthogonal to each other, and both are orthogonal

to the direction of the wave’s propagation, as shown in figure 2.2. The po-

larization of a light wave is defined by the orientation of its electric field.

Light emitted by a source is comprised of many constituent waves. In most

sources, such as the sun or a lightbulb, the constituent waves are each polar-

ized in a random direction. There is therefore no dominant direction in which

the electric field oscillates, and the emitted light is called unpolarized light.

In the case of a linearly polarized beam, the electric fields of all constituent

waves oscillate in the same direction. A device called a linear polarizer (LP)

can be used to produce linearly polarized light from any source by blocking

all portions of a beam except those with an electric field oscillating in one

particular direction, along what is called its transmission axis (TA). Mie the-

ory assumes a linearly polarized plane wave as the excitation beam which is

incident on a spherical scatterer at the origin[8]. This scenario is depicted in

figure 2.2.

A wave of any possible polarization can be represented as the superposi-

tion of two orthogonal polarization states[9]. Furthermore, Bohren and Huff-

man explain that, because of the linearity of Maxwell’s equations, when two

incident polarization states are superposed to represent an arbitrary polar-

ization state, the solutions to Maxwell’s equations for the two constituent

polarization states can be superposed to produce a solution for the arbitrary

polarization state. Therefore, solutions to Maxwell’s equations for any ar-

bitrary polarization state can be readily extrapolated after a given scattering

problem has been solved twice for two orthogonal polarization states[9]. The

electric fields represented by the solutions for the two orthogonal polariza-

tion states are superposed in the proper proportion, based on the proportions
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FIGURE 2.2: In Mie theory, a plane wave excitation beam is inci-
dent on a small sphere centered at the origin[8]. Shown here is
an x-polarized excitation beam propagating along the z-axis. Its
electric field, E, points along the x-axis, and its magnetic field,
B, correspondingly points along the y-axis.

of orthogonally polarized electric fields which must be superposed to repre-

sent the arbitrarily polarized electric field of the problem.

2.3 Size Estimation

Consider light of a given wavelength and polarization incident on a homo-

geneous, spherical scatterer with a given refractive index surrounded by a

uniform medium with a different refractive index. The Mie scattering pat-

tern produced under these particular conditions is distinctive to the size of

the scatterer. Furthermore, small size changes (on the order of nanometers) in

the scatterer result in significant changes to the Mie scattering pattern. These

principles have been applied to obtain size information about cell organelles,

as explained in Section 2.3.2.

An estimate for the diameter of the scatterer considered above can be ex-

tracted from a recorded angular scattering pattern if the wavelength and po-

larization of the excitation beam and the refractive indices of the scatterer

and its surrounding medium are known. Based on solutions to Maxwell’s
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equations, such as those of Mie theory, simulated scattering patterns can be

generated for spherical particles spanning a size range known to encompass

the size of the specimen, in regular increments. The simulated scattering pat-

terns for each size of scatterer can be compared to the empirical data, and the

diameter of the specimen can be estimated based on the closest match.

Because Mie scattering patterns are sensitive to changes in scatterer size,

angular scattering is particularly useful for detecting size changes in a spec-

imen over time. Size changes on the order of nanometers can be observed,

which is smaller than the resolution of typical optical microscopy. Further-

more, angular scattering techniques do not require that any alterations be

made to the specimen, such as the addition of fluorescent tags or other chem-

icals.

2.3.1 Generalized Lorenz-Mie theory

It is common to use laser light as the illumination beam when collecting scat-

tering data, since it can be relatively monochromatic, polarized, and high-

intensity. The Gaussian beam of a single mode laser can be well approx-

imated as a plane wave when the beam has a large diameter and is well-

collimated, which means that the beam diameter is approximately constant

at different points along the beam. However, it is sometimes beneficial when

using angular scattering to obtain size estimates to condense the laser beam

down to a spot with a diameter close to that of the scatterer. In this case,

the beam is not collimated and the laser is not well approximated as a plane

wave, and therefore Mie theory (which, as mentioned previously, assumes

plane wave illumination) is an inadequate model for the scattering. How-

ever, the incident beam can be represented as the superposition of monocro-

matic plane waves, and (because of the linearity of Maxwell’s equations) the

scattered electric and magnetica fields from such a beam can be modeled
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as the superposition of the scattered fields from those plane waves[10]–[12].

This strategy for generalizing Mie theory to provide solutions in cases of ar-

bitrary incident beams has led to generalized Lorenz-Mie theory (GLMT).

Solutions according to GLMT are of an almost identical nature to solutions

according to Mie theory, but GLMT takes the shape of the incident beam into

account. If the incident laser beam is centered on the scatterer to a good

approiximation (if the beam is "on-axis"), then the solution for scattered in-

tensity pattern according to GLMT takes a nearly identical form to that ac-

cording to Mie theory[13]. This is not unintuitive, since the solution is the

superposition of many Mie theory solutions. Consequently, the asymmetry

exhibited in each of the Mie theory solutions is also present in solutions ac-

cording to GLMT. In his doctoral thesis for the University of Rochester, Dr.

Zachary Smith includes scattergrams produced according to both models,

for light scattered by a polystyrene sphere with a diameter of 6µm, shown in

figure 2.3. There are visible differences in the two scattergrams, specifically

in the spacing between local irradiance maxima and in the irradiance of in-

dividal maxima, but the general features are comparable. The asymmetry on

which this thesis focuses is visible to a similar degree in both, and the axes of

symmetry of the two scattergrams, shown by dashed lines, are identical.

2.3.2 Literature review of angular scattering experiments

Angular light scattering has been used to obtain size estimates for and detect

size changes in cell organelles. Some cellular processes and certain diseases

cause organelles to swell or shrink. Detection of organelle size changes over

time and estimations of organelle size have been used to diagnose and study

such processes and diseases. Cancer, for example, is sometimes indicated by

enlarged nuclei, and apoptosis, which is cell death according to natural pro-

cesses, is indicated by changes in mitochondrial morphology. Both of these
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FIGURE 2.3: Simulated scattergrams for light scattered by a
6µm polystyrene bead according to GLMT (left) and Mie the-
ory (right), originally published by Dr. Zachary Smith in his
doctoral thesis for the University of Rochester[7]. Red, dashed
lines have been added to show that the axes of symmetry are
identical between the two.

indicators can be detected based on changes in light scattering. Raman scat-

tering, for example, has been used to detect cancer and distinguish cancerous

cells from noncancerous surrounding tissue [14]–[16].

In 2005, Wilson and Foster. measured the irradiance of light scattered at

angles ranging from 5o to 90o by intact cells. This was done using a goin-

iometer, which detected the irradiance of scattered light as it moved along a

circular path with the specimen at its center. The acquisition process took ap-

proximately two minutes. A Mie theory based model was used to simulate

angular scattering by two populations of cell organelles with different mean

sizes and broad size distributions. The experimental scattering data were fit

to theory in order to obtain an estimate for the mean sizes of populations of

organelles. Mitochondria were found to be the dominant scatterers by intact

cells[17].

Using the goiniometer system and fitting to a Mie theory model, Wil-

son et al. were able to detect an increase in size of the organelles within
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EMT6 cancer cells after they were subjected to oxidative stress (by photody-

namic insult), which indicated mitochondrial swelling had occurred. Specif-

ically, light was scattered more predominantly in the forward direction after

swelling was induced and less light was scattered at small angles, which indi-

cated an overall increase in the size of the scatterers. The scattering was also

measured from isolated mitochondria and fit to a Mie theory model which

assumed a single size distribution. They estimated the mean size of these

mitochondria to be 0.89µm ± 0.2µm. Because the scattering from isolated

mitochondria was so similar to scattering from whole cells, they concluded

that mitochondrial scattering, as opposed to scattering by other organelles

like the nucleus, dominates in the forward direction. They also concluded

that it is feasible to monitor mitochondrial morphology using angular scat-

tering methods[18].

In 2007, Wilson et al. used angular scattering methods to study apopto-

sis. In particular, they focused on the role of cytochrome c in this process

and the relationship between morphological changes in mitochondria and

the release of cytochrome c into the cytosol. They used immunofluorescence

microscopy to monitor the subcellular location of cytochrome c while using

angular scattering techniques to monitor the size of mitochondria within the

cells. The angular scattering measurements were obtained using a goiniome-

ter and size estimates were extracted by comparision to a Mie theory model.

Changes in the angular scattering measurements were observed at the same

time that cytochrome c was released by mitochondria into the cytosol. Based

on the change in light scattering, they were able to detect a 4% overall size

increase in mitochondria[19].

Cottrell, Wilson, and Foster used a modified, commercially-available in-

verted microscope to collect light scattered by a specimen and produce a scat-

tergram. This was markedly different from the goiniometer based method

used by Wilson et al. Rather than yielding a one-dimensional set of data
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points representing the irradiance of light scattered at a series of angles, col-

lected over the course of approximately two minutes, this method allowed

for the instantaneous capture of two-dimensional scattering data through an

angle range of approximately 0o to 18o. They collected scattergrams from

fluorescent, absorbing, polystyrene microspheres with known diameters and

a narrow size distribution and compared these to a Mie theory model. They

estimated the diameter of the microspheres to within less than two percent

of the manufacturer’s specified value[4]. To my knowledge, this group was

the first to image the scattered light and produce a scattergram.

Smith and Berger constructed a system capable of collecting both Raman

scattering and elastic scattering in the backward direction, producing scat-

tergrams depicting light scattered at angles out to approximately 45o as mea-

sured from the optical axis in the backward direction. Because most of the

light incident on a particle (greater by a factor of approximately 1× 106, ac-

cording to Smith and Berger) is scattered elastically, the signal from inelastic

Raman scattering is far weaker than the signal from light scattered elasti-

cally in the backward direction. The stronger elastic scattering signal must

be filtered out if the Raman signal is to be distinguished. Rather than dis-

card the elastically backscattered light, Smith and Berger collected it with a

microscope objective and extracted from it morphological information about

the scatterer. It was necessary to use a focused laser with high intensity as

the excitation beam so that the Raman scattering signal would be detectable.

They compared the recorded angular scattering data to simulated scatter-

grams produced based on Mie theory and simulated scattergrams produced

based on GLMT and were able to estimate the size of microspheres with a

precision of 3nm. Because of the noise in their experimental data, they found

that fits to GLMT and Mie theory were similar for the backscattered light[20].

Smith and Berger later published work with a slightly modified system

that was capable of collecting both forward and backward scattering, from
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approximately 0o to 60o in the forward direction and out to approximately

60o with respect to the optical axis in the backward direction. Illumination

was provided by a focused laser beam with a spot size at the specimen of

approximately 7µm. They validated their system by measuring scattering

from single polystyrene beads, multiple beads with a single, narrow size dis-

tribution, and multiple beads containing two differently-sized populations.

They were able to distinguish between the two populations of beads and es-

timate the size of each population with a precision of approximately 100nm.

Scattering from human immune cells, granulocytes, and lymphocytes was

also measured, and estimates for the mean size of different populations of

subcellular structures within multiple intact cells were extracted[5].

Smith, Chu, and Wachsmann-Hogiu created a system for recording light

scattered by particles in suspension with a cell phone camera as the detec-

tor. The system was capable of collecting light scattered from approximately

3o to 15o. Scattering from suspensions of beads with three different nominal

diameters was analyzed and the diameters were estimated with a precision

of between 4 and 8nm. They also measured the scattering from fat and pro-

tein droplets in suspension, produced by diluting milk in water, and from

baker’s yeast suspended in water, and extracted size estimates from the scat-

tering data which were consistent with existing literature. Finally, scattering

from human red blood cells, which were treated with a sphering agent that

caused them to transform from their natural shape into rough spheres, was

measured and extracted average size estimates which were both consistent

with values for a healthy donor and with estimates calculated based on con-

ventional microscope images[21].

Cannaday et al. investigated theoretically how the size of the angle range

recorded in scattergrams affects the accuracy and precision of fits to GLMT.

Scattergrams were simulated based on GLMT for the cases of single popula-

tions of polystyrene beads with a narrow log-normal size distribution with
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mean diameters of 1µm and 5µm and for the case of a single population of

cell organelles with a broad log-normal size distribution with a mean diam-

eter of 1.3µm. The latter distribution was chosen to approximate that of cell

organelles as reported by Wilson et al.[22]. Noise was added to the simu-

lated data and designed to resemble that which was observed in experimen-

tal scattergrams. Fits were compared for scattergrams which included angles

ranging from 10o to 60o and for scattergrams including only 20o to 60o. It

was found that the fits for simulated bead populations had higher uncer-

tainty when angles below 20o were excluded. It was found that the uncer-

tainty in fits for the simulated organelle population increased significantly

when angles below 14o were excluded. Experimental measurements were

also collected using an angular scattering microscope system. The system

was capable of collecting light scattered by single cells over an angle range

of approximately 10o to 60o. Fits of experimental scattering data from 1µm

and 5µm polystyrene beads and from single mouse cancer cells confirmed

what was found in simulations regarding the importance of collecting angles

below 20o. The effect of these angles on the fits was found to increase as the

size of the scatterer decreased[6].
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Chapter 3

Azimuthal asymmetry in Mie

theory and GLMT

3.1 Introduction

It will now be shown theoretically that the azimuthal asymmetry noted in

Chapter 1, and with which this thesis is primarily concerned, is related to

the polarization of the incident light. In his thesis, Smith derives an equa-

tion (equation 3.1 below) for the intensity of light scattered at each angle by

a Mie scatterer centered at the origin, based on the work of Bohren and Huff-

man, which is in turn based on Mie theory[7]. The form of the scattered

intensity equation according to GLMT is identical except that a linear factor

is included in the sum to account for the shape of the incident beam, and

the following analysis is therefore equally applicable to GLMT, as noted in

Chapter 1. The relationship between the polarization and the asymmetry of

the scattered intensity pattern is reflected in the scattered intensity equations,

but the mathematics are difficult to interpret physically. Many of the factors

in the scattered intensity equations lack a clear physical meaning and are

introduced instead for mathematical convenience. For this reason, the con-

cise scattered intensity equations must be expanded and explained, and their

derivations must be summarized, if a better understanding of the asymmetry
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is to be gained.

3.2 The scattered intensity equation

The scattered intensity equation provided by Smith and based on Mie theory

is[7]

Is ∝
|E0|2
(kr)2 (|S2(cos θ)|2 cos2 φ + |S1(cos θ)|2 sin2 φ). (3.1)

E0 is the amplitude of the electric field of the incident light wave, k is the

wavenumber, which is related to the wavelength λ of the light according to

k = 2π/λ, r, θ, and φ are the standard spherical coordinates, and S1 and

S2 are the following sums, which are functions of cos θ that encompass the

θ dependency of the equation, and are called the scattering amplitude func-

tions[7]:

S1 =
∞

∑
n=1

2n + 1
n(n + 1)

(anπn(cos θ) + bnτn(cos θ)), (3.2)

S2 =
∞

∑
n=1

2n + 1
n(n + 1)

(anτn(cos θ) + bnπn(cos θ)). (3.3)

The functions πn and τn, dependent only on θ, are given as[7]

πn = P1
n

sin θ ,

τn = dP1
n

dθ ,

(3.4)

where P1
n is a first-order associated Legendre function of degree n. The coef-

ficients an and bn are given as[7]

an = m2 jn(mx)[xjn(x)]′−jn(x)[mxjn(mx)]′

m2 jn(mx)[xh(1)n (x)]′−h(1)n (x)[mxjn(mx)]′
,

bn = jn(mx)[xjn(x)]′−jn(x)[mxjn(mx)]′

jn(mx)[xh(1)n (x)]′−h(1)n (x)[mxjn(mx)]′
,

(3.5)
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where jn and hn are bessel and hankel functions of order n, respectively, m =

n1/n2 is the relative refractive index of the particle, n1, as compared to that

for its surrounding medium, n2, and x is the size parameter

x = 2πn2a/λ, (3.6)

where a is the radius of the scatterer and λ is the wavelength of the incident

light.

The derivations of Smith, Bohren and Huffman, and Mie all consider the

direction of propagation of the incident light to be along the z-axis (axis 3 in

Mie’s 1908 paper), directed into the scattergram, and the polarization of the

incident light to be along the x-axis (axis 1). The polar angle θ is measured

with respect to the z-axis, and the azimuthal angle φ is measured with respect

to the x-axis[7]–[9]. This is depicted in figure 2.2 in Chapter 2.

The asymmetry exhibited in the theoretical scattergrams is azimuthal and

therefore related to the azimuthal angle φ. Equation 3.1 contains numerous

θ dependencies, but the variable φ is seen only twice, within sine-squared

and cosine-squared functions. The other factors which constitute the ampli-

tudes of these functions will be discussed in Section 3.4. The two functions,

plotted over two periods in Figure 3.1, oscillate between the values of zero

and one, depending on the azimuthal angle φ, and are exactly 90o out of

phase with each other. When the sine-sqared function is equal to zero, the

cosine-squared function is equal to one, and vice versa. As φ increases, the

two terms in equation 3.1 oscillate between zero and their maximum value.

At φ = 0, 180o, the sine-squared term vanishes, and the cosine-squared term

determines the intensity at each θ. At φ = 90, 270o, the cosine-squared term

vanishes. In between these values of φ, both terms contribute to determine

the scattering features.

The amplitude of the cosine-squared term includes the sum S1 and the
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FIGURE 3.1: Sine of φ squared and cosine of φ squared, plotted
over two periods. The two functions oscillate between zero and
one and are exactly 90o out of phase with each other.

amplitude of the sine-squared term includes the sum S2. These sums are

the same except for the fact that the size-dependent coefficients are applied

to different scattering amplitude functions. The scattering amplitude func-

tions (3.4), which oscillate as θ varies, produce the characteristic irradiance

maxima and minima seen in scattergrams. If the two scattering amplitude

functions are different, then the features of the scattergram, such as ripple

spacing, change with φ. Accordingly, the axes of symmetry for the theoret-

ical intensity pattern are directed along φ = 0, 180o and φ = 90, 270o. If the

two sums are not different, then the scattergram does not exhibit asymmetry,

since the features of the scattergram do not change with φ.

3.3 Mathematical source of asymmetry

Bohren and Huffman provide a rigorous account of the Mie theory derivation

from which equation 3.1 was adapted. The first and most challenging step is

to model the excitation beam, a linearly-polarized plane wave, in a way that

conforms to the spherical symmetry of the problem. The use of the spherical

coordinates, r, θ and φ, is therefore expedient. The plane wave is written

as[9],

~Ei = E0eikr cos θ êx, (3.7)
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where E0 is the maximum amplitude of the electric field. Crucially, the unit

vector êx indicates that the wave’s polarization is in the x-direction, and can

be expanded as follows to conform to a spherical coordinate system[9],

êx = sin θ cos φêr + cos θ cos φêθ + sin φêφ. (3.8)

3.3.1 Spherical vector harmonics

The plane wave in equation 3.7 is then represented by the superposition of

spherical vector harmonics as will be explained. These harmonics must sat-

isfy the vector wave equation if they are to represent a physically-realizable

plane wave. Bohren and Huffman simplify the process for fulfilling this cri-

terion by constructing a vector function,

~M = ∇× (~rψ), (3.9)

which has zero divergence and includes the scalar function ψ, which is a

solution to the scalar wave equation, as discussed below. The vector ~r is

the radius vector in spherical polar coordinates. It is clear that ~M has zero

divergence because

∇ · (∇× ~A) = 0 (3.10)

for any vector ~A[7]. This is important because ~M will eventually be used to

represent an electric field, and, according to Maxwell’s equations, electric and

magnetic fields have zero divergence in areas where there is no net electric

charge. By use of vector identities, it is true that[9]

∇2 ~M + k2 ~M = ∇× [~r(∇2ψ + k2ψ)]. (3.11)
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Therefore, if ψ satisfies the scalar wave equation,

∇2ψ + k2ψ = 0, (3.12)

then ~M satisfies the vector wave equation,

∇2 ~M + k2 ~M = 0, (3.13)

as well[9]. The vector~r is perpendicular to ~M, which is important, since the

former will be used to represent the direction of propagation of the incident

plane wave, and the latter will be used to represent its electric and magnetic

fields. Furthermore, Bohren and Huffman define

~N =
∇× ~M

k
, (3.14)

which also has zero divergence by equation 3.10 and also satisfies the vector

wave equation by equation 3.11. Lastly, since∇× ~N = k ~M, ~M and ~N have all

of the necessary properties to represent an electric field. Note that, on their

own, neither ~M nor ~N necessarily represents an electric or magnetic field.

Since ~M and ~N will satisfy the vector wave equation if ψ satisfies the scalar

wave equation, ψ may be used to generate the spherical vector harmonics.

The first step to solving the scalar wave equation for ψ is to assume that

a solution exists of the form ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ), constituted of func-

tions dependent on only one variable. This strategy for solving differential

equations is called separation of variables. The three separated equations of

one variable may then be solved individually[9],

d2Φ
dφ2 + m2Φ = 0, (3.15)
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1
sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

[
n(n + 1)− m2

sin2 θ

]
Θ = 0, (3.16)

d
dr

(
r2 dR

dr

)
+

[
k2r2 − n(n + 1)

]
R = 0. (3.17)

First, consider equation 3.15. Two solutions are required because if, for

a given integer m, Φm is a solution to 3.15, then Φ(−m), for a negative inte-

ger, is not a linearly independent solution[9]. There are, then, two linearly

independent solutions,

Φe = cos mφ, Φo = sin mφ, (3.18)

where the subscripts e and o indicate even and odd[9]. Here we have the first

appearance of the crucial functions sine and cosine of φ.

The solutions to 3.16 in the present case must be finite at θ = 0, π, and

we therefore choose Legendre functions of the first kind in cos θ, Pm
n (cos θ),

of degree n and order m. Solutions to 3.17 are spherical Bessel functions or a

linear combination of these functions, such as Hankel functions.

The requirement for two linearly independent solutions to Φ leads to two

solutions to ψ,

ψemn = cos mφPm
n (cos θ)zn(kr), (3.19)

ψomn = sin mφPm
n (cos θ)zn(kr), (3.20)

where Pm
n are Legendre functions of the first kind in cos θ of degree n and or-

der m, n is an integer such that n = m, m + 1, m + 2 . . ., k is the constant from

the scalar wave equation, and zn is any one of four spherical Bessel functions,

jn, yn, h(1)n , or h(2)n [9]. Which of these functions are chosen is discussed below.
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These solutions may be inserted into equations 3.9 and 3.14 to construct

the desired spherical vector harmonics, written in component form as[9]

~Memn =
−m
sin θ

sin mφPm
n (cos θ)zn(ρ)êθ

− cos mφ
dPm

n (cos θ)

dθ
zn(ρ)êφ, (3.21)

~Momn =
m

sin θ
cos mφPm

n (cos θ)zn(ρ)êθ

− sin mφ
dPm

n (cos θ)

dθ
zn(ρ)êφ, (3.22)

~Nemn =
zn(ρ)

ρ
cos mφn(n + 1)Pm

n (cos θ)êr

+ cos mφ
dPm

n (cos θ)

dθ

1
ρ

d
dρ

[ρzn(ρ)]êθ

−m sin mφ
Pm

n (cos θ)

sin θ

1
ρ

d
dρ

[ρzn(ρ)]êφ, (3.23)

~Nomn =
zn(ρ)

ρ
sin mφn(n + 1)Pm

n (cos θ)êr

+ sin mφ
dPm

n (cos θ)

dθ

1
ρ

d
dρ

[ρzn(ρ)]êθ

+m cos mφ
Pm

n (cos θ)

sin θ

1
ρ

d
dρ

[ρzn(ρ)]êφ. (3.24)

3.3.2 Expansion of plane wave

The spherical vector harmonics (equations 3.21 through 3.24) can then be

used to represent equation 3.7, the incident plane wave. They will each be
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superposed in the appropriate proportions according to an infinite double-

sum,

~Ei =
∞

∑
m=0

∞

∑
n=m

(Bemn ~Memn + Bomn ~Momn+

Aemn~Nemn + Aomn~Nomn), (3.25)

where A−mn and B−mn are coefficients dictating the degree to which each

spherical vector harmonic contributes to the model of the plane wave.

Bohren and Huffman prove through a rigorous process that all of the

spherical vector harmonics are orthogonal to each other[9]. From this, it fol-

lows that the coefficients in the above sum take the forms,

Bemn =

∫ 2π
0

∫ π
0
~Ei · ~Memn sin θdθdφ∫ 2π

0

∫ π
0 | ~Memn|2 sin θdθdφ

, (3.26)

Bomn =

∫ 2π
0

∫ π
0
~Ei · ~Momn sin θdθdφ∫ 2π

0

∫ π
0 | ~Momn|2 sin θdθdφ

, (3.27)

Aemn =

∫ 2π
0

∫ π
0
~Ei · ~Nemn sin θdθdφ∫ 2π

0

∫ π
0 |~Nemn|2 sin θdθdφ

, (3.28)

Aomn =

∫ 2π
0

∫ π
0
~Ei · ~Nomn sin θdθdφ∫ 2π

0

∫ π
0 |~Nomn|2 sin θdθdφ

. (3.29)

3.3.3 Polarization

It is now necessary to consider the polarization of the incident light. First,

note that sine and cosine are orthogonal functions in the sense that

∫ 2π

x=0
W sin px cos qxdx = 0 (3.30)
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for any function W which is not dependent on x and for any integers p and

q. Remember now the unit vector in equation 3.8. In the x-polarized case,

the dot products in the coefficients between ~Ei and ~Memn and between ~Ei and

~Nomn, in equations 3.26 and 3.29 respectively, include an expression of the

form sin pφ cos qφ in each term. Since all of these terms are integrated with

respect to φ from 0 to 2π, it follows from equation 3.30 that Bemn = Aomn = 0

for all m and n. The other two coefficients are also zero unless m = 1[9].

Furthermore, because the incident field is finite at the origin, jn(kr), the only

one of the four bessel functions mentioned above which is well-behaved at

the origin, must be used in the generating functions ψo1n and ψe1n; this is

indicated by the superscript (1). The expansion for ~Ei therefore takes the

form[9]

~Ei = E0

∞

∑
n=1

(
Bo1n ~M

(1)
o1n + Ae1n~N

(1)
e1n
)
. (3.31)

3.3.4 The scattered electric field

When the incident beam reaches the surface of the scatterer, the properties

of the medium through which the beam propagates change abruptly, over a

thickness of atomic dimensions. Therefore, on a relatively macroscopic level,

there is a discontinuity of the electric and magnetic fields at the surface of

the scatterer. However, the tangential components of both fields must be

continuous at this boundary. We may express this through the following

boundary condition,

(~Ei + ~Es − ~El)×~er = (~Hi + ~Hs − ~Hl)×~er = 0, (3.32)

where ~E and ~H are the electric and magnetic fields, respectively, and the sub-

scripts i, s, and l denote the incident, scattered, and internal fields, respec-

tively. Equation 3.32 is derived from the principle of conservation of energy,

as is described by Bohren and Huffman[9].
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Based on 3.32, the orthogonality of the vector harmonics, and the form of

the series expansion of the incident field (equation 3.31), the expansion for

the scattered field may be written as

~Es =
∞

∑
n=1

En
(
ian~N

(3)
e1n − bn ~M

(3)
o1n
)
. (3.33)

Here, En = inE0(2n + 1)/n(n + 1) and an and bn are given in equation 3.5.

The spherical Hankel function h(1)n is chosen, denoted by the superscript (3)

on each vector harmonic, in this expansion because both of the Bessel func-

tions, jn and yn, which are both included in the spherical Hankel functions,

are well-behaved in the region outside of the scatterer. Furthermore, h(2)n was

rejected because, as Bohren and Huffman explain, it corresponds to an in-

coming wave, in contrast to h(1)n , which corresponds to an outgoing wave.

The scattered field is almost entirely an outgoing wave at distances far from

the scatterer.

At distances far from the scatterer, the radial component of Ne1n in equa-

tion 3.33 is negligible, which is consistent with the fact that, as Bohren and

Huffman note, the scattered electric field at such distances is almost entirely

transverse1[9]. Equation 3.33 can be resolved into its transverse components

as follows,

Esθ ∼ E0
eikr

−ikr
cos φS2(cos θ), (3.34)

Esφ ∼ E0
eikr

−ikr
sin φS1(cos θ), (3.35)

where S1 and S2 are the sums given in equations 3.2 and 3.3. The two trans-

verse components, which are orthogonal to each other, add in quadrature to

yield the magnitude of the scattered electric field, and the intensity of this

field is proportional to the square of the amplitude. Hence, we arrive at the

1A transverse electric field is one which oscillates in a plane perpendicular to the direction
of the field’s propagation.
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scattered intensity, given in equation 3.1.

The sine and cosine functions of φ appear in equation 3.1 because they are

in equations 3.34 and 3.35, the transverse components of the scattered electric

field. Their presence in these components may be traced back to the corre-

sponding components of the spherical vector harmonics in equation 3.33, the

scattered field expansion. These particular vector harmonics appear in the

expansion because they are in the expansion for the incident plane wave,

and these particular vector harmonics are present in the plane wave expan-

sion because of the polarization of the incident beam, which was explained

in subsection 3.3.3.

If the incident beam is a y-polarized plane wave, meaning that its electric

field oscillates along the y-axis, êx in equation 3.7 is replaced by

êy = sin θ sin φêr + cos θ sin φêθ + cos φêφ, (3.36)

in which, compared to êx, every instance of sin φ has been replaced with cos φ

and vice versa. The result is that ~Momn and ~Nemn in equation 3.25 vanish in-

stead of their even and odd counterparts. Therefore, as Bohren and Huffman

note[9],

~Es(φ; x-polarized) = ~Es(φ +
π

2
; y-polarized), (3.37)

the scattered field resulting from a y-polarized incident beam is the same as

that resulting from an x-polarized incident beam, except that it is shifted in

φ by π/2rad = 90o. This amounts to a 90o rotation of the scattering pattern.

This is somewhat intuitive, since Bohren and Huffman also note that

~Mo1n(φ) = ~Me1n(φ +
π

2
);

~No1n(φ) = ~Ne1n(φ +
π

2
). (3.38)

It has now been shown that the sine and cosine squared of φ functions
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which make azimuthal asymmetry mathematically possible are related to

the polarization in that they result from the conversion of the cartesian unit

vector ~ex, which specifies the polarization of the incident plane wave, into

spherical coordinates.

3.3.5 Physical interpretation

Bohren and Huffman note that the scattered electric field is almost entirely

transverse at distances far from the scatterer[9]. The scattered light at this dis-

tance all has the same polarization as the incident light, which is x-polarized

in the case of equation 3.1. In a cartesian coordinate system, then, the scat-

tered electric field at any point has only one component, directed along êx.

The representation of the scattered field in spherical coordinates, however, is

deceptive because in this coordinate system the direction of each unit vector

varies. Therefore, even though the direction of the scattered electric field is

constant relative to the optical axis, it is not constant relative to the spherical

unit vectors. In short, the use of a spherical coordinate system with unit vec-

tors with varying directions leads to an equation which is more complicated

than the physical situation represented by it would seem to suggest.

3.4 The two sums

It has been explained that the asymmetry is mathematically possible because

of the two trigonometric functions which are mutually out of phase. How-

ever, it remains to be explained how the two sums, S1 and S2, come to be

different, for this difference is a necessary condition for an azimuthally asym-

metrical intensity pattern. The sums themselves are simply the consolidation

of all θ dependencies in the expression for the scattered field, and these de-

pendencies may be traced back to the spherical vector harmonics. The sums

are each included in the amplitude for one of the transverse components of
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the scattered field, and they are the combination of like components of the

two spherical vector harmonics in equation 3.31. They differ because these

individual components of the spherical vector harmonics differ. The vec-

tor harmonics were constructed by taking the curl of a solution to the scalar

wave equation, ψomn or ψemn. Each component in the curl includes a partial

derivative of ψ−mn with respect to a different variable, and the result of this

is that all three components are distinct. The curl of ψomn or ψemn was evalu-

ated to obtain ~M−mn, and subsequently the curl of the result was evaluated to

obtain ~N−mn. These curls were evaluated in an effort to ensure that the spher-

ical vector harmonics satisfied Maxwell’s equations, which must necessarily

be satisfied if a mathematical model is to represent physical electromagnetic

phenomena. Any further explanation would require an exploration into why

Maxwell’s equations are what they are, and that is beyond the scope of this

thesis.
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Chapter 4

The effects of changes in

polarization on experimental

scattergrams

4.1 Introduction

It has been shown that the polarization of the incident light is related to the

azimuthal asymmetry of theoretical Mie scattering. Furthermore, it has been

shown that the axes of reflective symmetry in theoretical scattering patterns

rotate with the axis of polarization. It will now be demonstrated experimen-

tally that rotating the polarization of the incident light causes a rotation in

the scattered intensity pattern. To my knowledge, this is the first time exper-

imental demonstrations have been documented of how the polarization of

incident light affects Mie scattering.

4.2 Experimental Methods

The angular scattering microscope used for the following experiments was

constructed by myself and James Hoelle of Rollins College, under the super-

vision of Dr. Ashley Cannaday, as part of ongoing research for the Student-

Faculty Collaborative Scholarship program. A diagram of the microscope
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used for this thesis is shown in figure 4.1. The microscope includes both

sample imaging and scattered light imaging modalities, which can be used

simultaneously. The illumination source is a 150mW diode-pump solid state

(DPSS) laser with peak output wavelength of 532nm. A half-wave plate

(HWP) is mounted in a rotating mount and placed directly in front of the

laser aperture so that the polarization state of the excitation beam can be

altered. A linear polarizer (LP), also in a rotating mount, is mounted di-

rectly after the HWP. Following the polarizer, two lenses are used to ex-

pand the beam size and a third is used to focus it down onto the core of a

polarization-maintaining, single-mode, optical fiber. The beam is expanded

before the condensing lens because the minimum possible spot size for a

Gaussian beam decreases as the initial beam diameter increases[1]. The beam

is condensed so that the spot fits within the core of the fiber, maximizing the

intensity of light transmitted through the fiber. The output end of the fiber is

mounted to a vertical cage system. Upon exiting the fiber, the diverging laser

light is collimated using an anti-reflective (AR) coated, plano-convex lens, L1,

with a focal length of 35mm, which is placed approximately one focal length

from the fiber tip. The collimated beam is focused by an AR coated, 75mm

focal length, plano-convex lens, L2, to a beamwaist of w0 ≈ 7.5µm, resulting

in an excitation spot with a diameter of approximately 15µm at the scatterer.

The beam is condensed so that one specimen at a time can be illuminated

and the scattering from a single specimen recorded. An XY translation stage

is placed below the converging lens, at the focal point of the lens, to hold a

sample chamber containing the specimens. The translation stage allows for

gradual scanning of a sample so that an individual specimen can be posi-

tioned within the excitation spot.

An Attofluor cell chamber holding a round coverslip sits atop the trans-

lation stage. For the experiments outlined in this thesis, polystyrene beads

with narrow size distributions were diluted in twice-distilled water, and a



36

FIGURE 4.1: Diagram of the optical system used to collect scat-
tering data for this thesis[23]. The system consisted of: A laser;
a half-wave plate, HWP; a linear polarizer, LP; an optical fiber;
a fiber coupling system, FC; converging lenses, L1-L8; a micro-
scope objective, MO; a beamsplitter, BS; CMOS detectors, D1
and D2; a mask, M. The green path represents the excitation
beam, the red path shows the scattered light imaging modal-
ity, and the blue path shows the sample imaging modality. A
piece of ground glass could be inserted after L2 in order to pro-
duce an approximately uniform illumination field for the sam-
ple imaging modality.

small amount of the resulting suspension was transferred into the cell cham-

ber. The water was allowed to evaporate overnight so that the beads adhered

electrostatically to the coverslip. Samples were prepared using one of two

sizes of beads. The two sizes of beads had nominal diameters of 1.75µm and

5µm. The manufacturer-specified size distribution of the 1.75µm beads was
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1.745µm± 0.022µm and that for the 5µm beads was 5.027µm± 0.047µm.

An achromatic, 100x, oil-immersion microscope objective (MO) with a nu-

merical aperture (NA) of 1.25 is placed below the sample plane in an XYZ

translation stage to collect the forward-scattered light from the specimen.

The high NA allows for collection of light over a large angle range of approxi-

mately 0o to 60o. A 50/50 plate beamsplitter (BS) directs the light collected by

the objective along two paths. Light transmitted through BS is incident on L3,

which acts as an eyepiece for the MO, forming a microscope. L4 is used to

image the sample plane onto a complementary metal-oxide-semiconductor

(CMOS) detector. When a piece of ground glass is placed after L2 such that

the illumination by the laser at the sample plane is approximately uniform

and extends over a large area, this portion of the system records an image of

the sample plane, so that a bead can be located and positioned at the center of

the excitation spot by use of the XY translation stage. With the ground glass

removed, the excitation spot can be seen in relation to any beads present in

the frame, allowing for an isolated bead to be placed precisely at the center of

the excitation spot. With a bead so positioned, light from the excitation spot is

elastically scattered by the bead, and this light is collected by the microscope

objective.

Along the path of light reflected by the beamsplitter, a 4f system1 con-

sisting of two lenses, L5 and L6, with focal lengths of 300mm and 250mm

respectively, is used to image the scattered light collected by the microscope

objective. L5 is placed so that its front focal plane aligns with the back focal

plane of the microscope objective, which is the Fourier plane at which an im-

age of the scattered light exists. A mask, consisting of a small drop of black,

1A 4f system consists of two lenses with focal lengths f1 and f2. The input plane is a
distance f1 to the left of the first lens, and the output plane is a distance f2 to the right of the
second lens. The two lenses are spaced so that their focal lengths align at what is called the
Fourier plane[24].
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acrylic paint on a microscope coverslip2, is placed at the output plane of the

first 4f system so that it is in the same plane as the image of the scattered light.

The mask blocks unscattered light, at angles less than approximately 8o, from

proceeding through the system. Unscattered light is far more intense than

the light which is elastically scattered by the bead, especially at higher scat-

tering angles, and would produce artifacts in the image of the scattered light

recorded by the second CMOS detector (D2) if not obstructed by the mask.

Preventing unscattered light from reaching the detector also leaves more of

the detector’s dynamic range available for recording the lower-intensity scat-

tered light. A second 4f system, consisting of two lenses, L7 and L8, with

focal lengths of 50mm and 100mm respectively, is used to relay the masked

image at the output plane of the first 4f system to D2, which records a fi-

nal image of the scattered light. The magnification by the first 4f system is

1.2, and the magnification of the second 4f system is 2, resulting in a total

magnification of 2.4.

4.2.1 Half-wave Plates

The HWP could be used to rotate the polarization of the laser light of the

excitation beam. As stated in Chapter 2, the polarization of a light wave

is defined by the direction in which its electric field oscillates. A HWP has

two orthogonal axes which lie in its plane and is made of material which

has a different refractive index, n, for electric fields or components of them

which oscillate along one axis than for those which oscillate along the orthog-

onal one. Since the velocity, v, at which an electromagnetic wave propagates

is given by v = nc, where c is the speed of light in vacuo, the component

2The paint was applied to the coverslip using the tip of a pin. The droplet of paint on the
end of the pin was carefully allowed to contact the coverslip for a brief instant, so that a very
small amount of paint adhered. It was difficult to control the amount of paint applied, but
through a process of trial and error a droplet which was nearly circular and approximately
one-half millimeter in diameter was applied, and this resulted in a mask with the desired
properties.
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of light’s electric field which oscillates along one axis travels at a different

speed through the HWP than the component oscillating along the orthogo-

nal axis. A HWP therefore has a "fast" axis and a "slow" axis, as shown in

figure 4.2. The component of the electric field of light which oscillates along

the slow axis is delayed by a half-integral multiple of its wavelength com-

pared to the component of the field which oscillates along the fast axis upon

passing through the plate3. In the case where an electric field is polarized at

an angle θ with respect to the slow axis of the HWP, as shown in figure 4.2,

only one of the components of the electric field is delayed by the HWP, and

the effect is to rotate the polarization through an angle of 2θ.

FIGURE 4.2: When the incident electric field is polarized at an
angle θ with respect to the slow axis of a HWP, it can be con-
sidered in terms of its components as projected onto the axes
of the HWP. Upon passing through the HWP, the component
along the slow axis is delayed with respect to the component
along the fast axis. The effect is to rotate the polarization axis
through an angle of 2θ. The electric field is shown in blue before
passing through the HWP and in orange after passing through
the plate. The delayed component in the figure remains blue in
color after passing through the HWP.

3The index of refraction along both axes and the thickness of the wave plate are both
considered by the manufacturer, and the thickness of the wave plate is carefully controlled
so as to result in the proper difference in optical path length.



40

4.2.2 Changing the polarization

The scattering of light by polystyrene beads was measured using the angular

scattering microscope described above, and measurements were taken with

the incident beam in different linear polarization states. The polarization was

changed by rotating the HWP and the linear polarizer. Laser light is, in gen-

eral, fully linearly polarized to a good degree. However, the polarizer was

placed in the system to assure that the light was fully linearly polarized. Ini-

tially, the HWP was removed from the system and the polarizer was rotated

so that its transmission axis was aligned with the polarization of the laser

light, as judged by which orientation yielded the highest transmitted irradi-

ance. The transmitted irradiance was measured in real time by the CMOS

detector. The HWP was then placed before the polarizer, and the HWP was

rotated until the irradiance of light transmitted through the polarizer was

maximized. This maximal transmission indicated that the HWP was not al-

tering the polarization state of the laser light. The initial orientations of the

polarizer and the HWP were noted.

When the HWP was rotated by an angle θ, the polarizer was rotated by

an angle of 2θ in the same direction, so that its transmission axis was aligned

with the desired polarization. In the case of this experiment, three differ-

ent polarization states were used. The first was the default state of the laser

beam. The second was produced by rotating the HWP by 22.5o ± 1.00o, and

the polarizer was rotated accordingly by 45.0o ± 2.00o. The third was pro-

duced by rotating the HWP further to an angular displacement of 45.0o ±

1.00o, and the LP was rotated accordingly to a displacement of 90.0o ± 2.00o.
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4.3 Experimental measurements of angular scatter-

ing

The visible light modality of the microscope was used to locate a bead as the

sample was scanned using the translation stage. Once an isolated bead was

found (isolated insofar as no other beads were within a radius of approxi-

mately 25µm), the ground glass was removed and the bead was centered in

the excitation spot. A visible light image of a polystyrene bead with a diam-

eter of approximately 5µm, centered within the excitation spot, is shown in

figure 4.3.

FIGURE 4.3: A bead with a diameter of approximately 5µm,
centered within the excitation spot. The excitation spot had a
diameter of approximately 15µm. Care was taken to ensure that
no other scatterers were within a radius of 25µm from the scat-
terer.

Light scattered by the bead was then recorded using the scattering modal-

ity of the microscope. With the same bead centered in the excitation spot, the

HWP was rotated by 22.5o ± 1.00o and the polarizer was rotated by 45.0o ±

2.00o, as described in Section 4.2.2, and the scattering was recorded. The

HWP was then rotated by another 22.5o± 1.00o and the polarizer was rotated

by 45.0o ± 2.00o, and scattering from the same bead was recorded. Once the
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scattering of light with three different polarization states was recorded, the

sample was scanned using the translation stage until another isolated bead

was found. This bead was centered within the excitation spot and the process

was repeated. The scattering was recorded from a total of 16 beads for each

of the two sizes, 1.75µm and 5.00µm. For each of the 32 beads, scattering of

light with each of the three polarization states was recorded.

Scattergrams from two beads, one of each size, and for an incident beam

with each of the three polarization states, are shown in figure 4.4. The scatter-

grams are visibly asymmetrical, as is predicted by Mie theory and GLMT, and

all exhibit approximate mirror symmetry along two orthogonal axes. Fur-

thermore, the axes of symmetry are visibly rotated for different polarization

states. The scattergrams were not rotated after being recorded.

The asymmetry of the scattering is manifested in a number of features

of the scattergrams. The irradiance decreases more between maxima in two

quadrants of the scattergrams than in the other two. This is more easily seen

in scattergrams from 5.00µm beads than in those from the smaller beads.

The effect is also more pronounced at higher angles than at angles below ap-

proximately 35o. This is likely why there is no obvious asymmetry in the

scattergram published by Cottrell, et al., discussed in Chapter 1. The obser-

vations above hold true for all of the scattergrams recorded, as all of them

varied in nearly identical ways when the polarization of the incident light

was changed.

The linear polarizer was rotated by 45o ± 2o between recording scatter-

grams in the first column of figure 4.4 and recording those in the second, and

the orientations of the axes of symmetry were expected to rotate by the same

angle. However, the axes of symmetry of scattergrams in the first column

appear to differ in their orientations from those of scattergrams in the second

column by less than 25o for the 5.00µm beads and less than 31o for the 1.75µm

beads. Potential reasons for this discrepancy will be discussed in Section 4.5.
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FIGURE 4.4: Scattergrams from the same 5.00µm bead (top)
and the same 1.75µm bead (bottom). The leftmost scattergrams
were collected with the linear polarizer (LP) in its initial state,
the middle scattergrams were collected when the LP was at an
angular displacement of 45o, and the rightmost scattergrams
were collected when the LP was at a displacement of 90o. A col-
ormap was added to each scattergram in MATLAB; dark blue
indicates the lowest irradiance and crimson indicates the high-
est. The scattergrams from 1.75µm beads are plotted with a
logarithmic scale for clarity. The axes of reflective symmetry
are indicated by dashed, red lines, and are visibly rotated for
different polarization states. Red dots indicate points at which
features of the scattergram change, which were used for refer-
ence when placing the axes.

4.4 Effects of polarization on size estimates

Extracting size estimates from angular scattering data typically involves fit-

ting experimental scattergrams to theoretical scattergrams, generated using

either Mie theory or GLMT. If the assumed polarization state for the exci-

tation beam when generating theoretical scattergrams is different from the
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polarization state of the experimental excitation beam, the difference in ori-

entation between the experimental and theoretical scattergrams could poten-

tially lead to decreased accuracy and increased uncertainty for the fits. The

scattergrams collected as described in Section 4.3 were fit to theory in order

to test whether rotating the polarization of the excitation beam results in im-

proved fits to theory or changes in the mean or standard deviation of size

estimates.

The scattering angle associated with each pixel on the CMOS array was

determined using a diffraction grating. L2 was removed from the system so

that the light incident on the translation stage was collimated, and a trans-

mission diffraction grating with a known groove spacing was placed on the

translation stage, with the grooved side facing the MO. A diffraction grating

causes light to be redirected at various angles, forming a diffraction pattern

with local irradiance maxima occurring at known angles, as shown in figure

4.5.

Irradiance maxima in a diffraction pattern are identified by their order,

m. The central maximum is called the zeroth order maximum (m = 0), and

corresponds to light which is undeviated after passing through the grating.

The pair of maxima closest to the zeroth order on either side is a pair of first

order maxima (m = 1), and the order increases in like manner for each pair of

maxima further from the center. The angle θ at which each order occurs is de-

pendent on the wavelength of the incident light, λ, and the distance between

grooves in the grating, a, according to the diffraction grating equation[1],

mλ = a sin θ. (4.1)

When the laser light, collimated by L1, was incident on the grating, it was

redirected at various angles and collected by the MO in the same way as light

scattered at various angles by a specimen. The diffracted orders appearing
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FIGURE 4.5: A diffraction grating was placed after L1, with L2
removed from the system, so that collimated light was incident
on the grating. Light was redirected by the grating at various
angles, and that light was collected by the MO. The irradiance
maxima, called orders, occurred at angles which could be cal-
culated from the diffraction grating equation, 4.1.

in the image recorded by the CMOS detector, shown in figure 4.5, therefore

served as markers for pixels corresponding to particular scattering angles,

according to equation4.1. Angles corresponding to pixels in between orders

were determined by interpolation.

MATLAB software was created to fit the experimental scattergrams to a

GLMT-based model. First, a set of theoretical scattergrams was generated

based on GLMT. These scattergrams assumed a horizontally polarized ex-

citation beam with a wavelength of 532nm incident on a sphere with a re-

fractive index of 1.57826 (for polystyrene), surrounded by a medium with

a refractive index of 1.00029 (air at STP). Scattergrams were generated for

spheres with diameters ranging from 0.01µm to 8.00µm, in increments of

0.01µm. These scattergrams were divided into four sections called "bins,"

as shown in figure 4.6. The average scattered irradiance at each angle within

a bin, for angles θ ranging from 8o to 55o, was plotted as a one-dimensional
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curve, as shown in figure 4.7. The same binning process was performed for

each experimental scattergram. The plots of irradiance versus angle for each

bin in the experimental scattergram were compared to the plot for the corre-

sponding bin of each theoretical scattergram. Binning the scattergrams and

comparing each of the four bins to theory, as opposed to representing the

average scattered irradiance at each angle for the entire scattergram at once,

allows for asymmetrical features of the scattergrams to be represented in the

one-dimensional curves because each of the four curves can be different. The

curves were compared to theory using a square error metric M2 given by

M2 =
θ=55

∑
θ=8

(
Iexp(θ)− Itheory(θ)

)2
+ 10

(
Iexp(θ)− Itheory(θ)

)2
, (4.2)

where Iexp(θ) is the irradiance value at a given angle for the experimental

curve and Itheory(θ) is the irradiance value at that same angle for the theo-

retical curve. The theoretical diameter which resulted in the lowest value for

M2, summed across all four bins, was chosen as the best size estimate for the

scatterer.

Scattergrams from 16 beads of each diameter and with each of the three

various polarizations described above were fit to theory using the MATLAB

software. The average size estimates for each bead size and for each polariza-

tion state are shown in Table 4.1, as well as the standard deviation between

size estimates. The manufacturer-specified size distribution is also shown for

each bead size. Comparing the scattergrams in figure 4.4 and the theoretical

scattergrams in figure 2.1, which were generated assuming a horizontally-

polarized incident beam, it is clear that the scattergrams recorded with the
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FIGURE 4.6: The scattergrams were divided into multiple sec-
tions called "bins." The average scattered irradiance at each an-
gle θ within each bin was plotted as a one-dimensional curve
which was fit to theory. The bins have been color coded in the
above figure and numbered 1-4.

FIGURE 4.7: The average scattered irradiance at each angle
within a bin was plotted as a one-dimensional curve. Shown is
the theoretical curve for a polystyrene bead in air with a diam-
eter of 5.18µm. The local irradiance maxima are clearly visible
in the curve.
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polarizer rotated by 90o are oriented most similarly to the theoretical scatter-

grams used for comparison in the fitting code, which were generated assum-

ing a horizontally-polarized incident beam. For each of the bead sizes, scat-

tergrams recorded with the polarizer rotated by 90o yielded a standard de-

viation which was more than 35% lower than that for scattergrams recorded

with the polarizer in the other two orientations. In the case of the 5.00µm

beads, the standard deviation was more than 60% smaller when the polar-

izer was at an angular displacement of 90o as compared to when the polar-

izer was in the other two orientations. The standard deviation in each case

was smaller than the manufacturer-specified range for the bead sizes.

Specified diameter: 1.755µm± 0.022µm
Average diameter estimate Standard deviation

LP rotated by 0o 1.77µm 0.013µm
LP rotated by 45o 1.75µm 0.022µm
LP rotated by 90o 1.76µm 0.0082µm

Specified diameter: 5.027µm± 0.047µm
Average diameter estimate Standard deviation

LP rotated by 0o 5.18µm 0.014µm
LP rotated by 45o 5.18µm 0.014µm
LP rotated by 90o 5.17µm 0.0054µm

TABLE 4.1: Average diameter estimates for the same two
groups of 16 polystyrene beads, each group with a narrow,
manufacturer-specified size distribution. Estimates were pro-
duced based on scattergrams with three different polarizations.

Fits for one representative bead of each size and for each of the polariza-

tion states of the excitation beam are shown in figure 4.7. Although the stan-

dard deviation between size estimates was the smallest for both bead sizes

when the linear polarizer was rotated by 90o, the theoretical curves resem-

bled the experimental curves more closely in fits for the other polarizations.

Therefore, because the standard deviation between fits for all polarizations

was smaller than the manufacturer-specified range of sizes for the beads,

the smaller standard deviation for one polarization is likely not indicative

of more accurate size estimates. This will be discussed further in Section 4.5.
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FIGURE 4.8: The average scattered intensity at each angle
across each of the four bins was plotted as a one-dimensional
curve and fit to theory. The dotted, black curve represents the
best theoretical fit, and the solid, red curve represents data from
the scattergram. Fits are shown for the same 5.00µm bead (left)
and the same 1.75µm bead (right) for each of the three polariza-
tion states of the excitation beam. The four sections, delineated
by a vertical, dashed, red line, correspond to the four bins of the
scattergram. Each bin contains angles up to 55o.
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4.5 Discussion and conclusion

The experiments described above demonstrate that the asymmetries exhib-

ited in Mie scattering patterns are related to the polarization of the excitation

light. The axes of symmetry of the scattergram rotate as the polarization ro-

tates, and equation 3.37 was demonstrated empirically to be true. The results

also support the hypothesis that the asymmetry predicted by Mie theory and

GLMT is a feature distinctive to Mie scattering.

The axes of symmetry in the scattergrams from 5.00µm beads did not ap-

pear to be rotated by the expected 45o when the linear polarizer was rotated

by that amount. The degree of uncertainty with regard to the angular dis-

placement of the polarizer, which was judged based on graduations etched

into the rotation mount, was small (2o), and it is unlikely that this uncertainty

led to the discrepancy between the rotation of the polarizer and the observed

rotation of the axes of symmetry in the scattered irradiance patterns.

It was also demonstrated that rotating the polarization of the excitation

beam before recording scattergrams can affect the standard deviation in size

estimates produced by fitting those scattergrams to theory. The standard de-

viation between size estimates for scattergrams recorded with the linear po-

larizer rotated by 90o was smaller than that between size estimates for the

other polarizations. However, it is unlikely that the reduced standard devi-

ation is indicative of more accurate size estimates. First, the standard devia-

tion between size estimates for all polarizations was less than the manufacturer-

specified size range for the beads. Furthermore, as seen in figure 4.8, in the

case of the 5.00µm beads, fit curves resembled the experimental curves more

closely in fits for scattergrams recorded with the polarizer in its initial state

than with the polarizer rotated by 90o.
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Chapter 5

Conclusions and potential

applications of this work

The irradiance pattern of linearly polarized light scattered by a spherical scat-

terer with a diameter on the order of the wavelength of light is azimuthally

asymmetrical but has two axes of reflective symmetry. It has been shown

that the axes of symmetry are related to the polarization of the incident light

and rotate as the polarization is rotated. This is reflected in mathematical

models of the scattering by sine and cosine functions of the azimuthal angle

φ, which are present in the two transverse components of the scattered elec-

tric field and have amplitudes which include different functions of the polar

angle θ, as was explained in Chapter 3. This effect was demonstrated empiri-

cally by recording the scattering of light with differing polarization states by

polystyrene beads, as was documented in Chapter 4.

A deeper understanding of elastic scattering of light by small particles

has potential uses not just in the field of physics, but also in biology. As

mentioned in Chapter 2, light scattering measurements can yield precise size

estimates for subcellular structures like mitochondria. Changes in scatter-

grams can reflect size changes on the order of nanometers in organelles. This

thesis explores a key aspect of such scattergrams, and a better understanding

of the asymmetry may be advantageous to those who use angular scattering

to produce size estimates for scatterers.
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It was shown in Chapter 4 that rotating the polarization of the excitation

beam before recording scattergrams can reduce the standard deviation be-

tween size estimates produced by fitting those scattergrams to theory. How-

ever, it is unlikely that this reduced standard deviation is indicative of more

accurate size estimates, for reasons explained in Section 4.5.

5.1 Future research

Something that this thesis does not address is the physical mechanism which

causes light to scatter asymmetrically off of a perfectly spherical scatterer. As

stated in Chapter 3, the asymmetry is a direct mathematical consequence of

Maxwell’s equations. Therefore, it is likely that the mechanism is fundamen-

tal to electromagnetic theory in general. Furthermore, since the mechanism is

not apparent on the scale of the wavelength of light, it is likely that the asym-

metry results from interactions on the molecular or atomic level. The possi-

bility that the asymmetry is exclusive to scatterers composed of polystyrene

is undermined both by the presence of asymmetry in the simulated scatter-

grams of Chapter 4 and the fact that, while the only material-specific quality

of either the scatterer or its surrounding medium explicitly considered by

Mie theory is refractive index, it can be seen in Chapter 3 that an asymmetri-

cal scattergram is still predicted unless the two sums (equations 3.2 and 3.3)

in equation 3.1 are identical. It may also be worth investigating whether or

not there exists a physically possible scenario in which the two sums would

be identical.

It was noted in Chapter 4 that one of the asymmetrical features of the

experimental scattergrams in figure 4.4 is two quadrants in which the irra-

diance falls to a lower value between local maxima than in the other two. It

may be worth exploring whether fitting only these two quadrants to theory
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yields more accurate or consistent size estimates than fitting all four quad-

rants.

In the ongoing research led by Dr. Ashley Cannaday, which uses angu-

lar scattering theory to extract size estimates for the organelles within sin-

gle cells, the polarization of the excitation beam will be rotated to precisely

match the polarization assumed when generating theoretical scattergrams

for the fitting code. It may also be advantageous for groups like Dr. Can-

naday’s to record scattering of light with two orthogonal polarizations for

each specimen, and then to compare scattering for both polarizations to the

appropriate theory in order to extract a size estimate. Averaging the size

estimates for both polarizations may yield more accurate and consistent re-

sults because the effects of artifacts in the recorded images that do not change

positions with rotation of the polarization of the incident beam may be sup-

pressed. Furthermore, because of equation 3.37, the same set of theoretical

scattergrams generated for the fitting code could be used when fitting both

sets of recorded scattergrams. The theoretical scattergrams would simply

have to be rotated by 90o before comparison to one of the sets of experimen-

tal scattergrams.
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