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ABSTRACT

Creating a Sample of Off-Color Galaxies Using Big Data Tools

by

Christopher Becker

Chair: Dr. Christopher Fuse

This thesis begins an investigation into the presence of off-colored galaxies in the Sloan

Digital Sky Survey. Through establishing the emergence and history of Astroinfor-

matics, the thesis introduces the concepts surrounding both off-color galaxies and the

Big Data tools helpful in analyzing the data to find them. A discussion of initial im-

plementation methods and revised implementation due to difficulties with previous

plans follows. Results are presented, with well in excess of 500,000 candidates for

off-color galaxies present in the sample. Conclusions are then drawn regarding such a

large sample and the implications this may have on the conventional understanding

of galaxies. Future work and improvements to the project are discussed at length in

the closing section.
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CHAPTER I

Introduction

1.1 A Brief Discussion of the Components Necessary for Un-

derstanding this Thesis

This project requires a functional understanding of several different, but very in-

terrelated subjects. The first aspect centers around an understanding of astronomical

concepts, including extra-galactic morphology, on- and off-color galaxies, and the Pet-

rosian ratio. Additionaly, an understanding is needed of the Sloan Digital Sky Survey

(SDSS) and the data types produced. Finally, a basic level of understanding of Big

Data, and the relevant tools employed, such as MapReduce and Hadoop, among oth-

ers will be established. This introductory section will provide a brief overview of each

aspect, while Section 2 will further discuss recent developments and their relevance

to the project itself.

1.2 An Overview of Galaxies

This subsection will provide the reader with a working understanding of the prop-

erties of Galaxies, including colors, morphologies, and Petrosian ratios. Galactxy

morphology is relatively straightforward, with three major classifications, elliptical,

spiral, and irregular galaxies Buta (1992). For the purposes of this paper, only ellip-
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tical and spiral galaxies will be investigated, while irregular galaxies will be filtered

out. Elliptical and spiral galaxies are categorized primarily by shape and several ele-

ments deemed key to a particular galactic classification, as will be discussed shortly

Doi et al. (1993).

1.2.1 Galactic Morphology

In the case of spirals, these galaxies posses a bulge in the center of the galaxy, a

disk dominated by young stars, and a halo. Additionally, these galaxies have their

namesake spiral arms within this disk. The galactic bulge is usually the oldest part

of the spiral galaxy, containing the oldest star clusters in the galaxy Buta (1992);

Graham et al. (2005). Typical spirals are identifiable by the dominance of young blue

stars in the spiral arms. These stars, of type O and B, are extremely hot, bright,

and short-lived, indicating that these stars were produced in recent bursts of star

formation Tojeiro et al. (2013)

Elliptical galaxies are more easily distunguished due largely to a lack of any defin-

ing structure. These galaxies appear as a featureless, vaguely rounded object, often

drawing comparisons to a golf ball or egg in shape Buta (1992).

Typically, Spiral galaxies are also identified by a dominance of blue light, indi-

cating star formation and therefore that the galaxy is relatively young. Similarly,

elliptical galaxies are typically found to have a dominance of red light, indicating less

star formation and an overall older stellar population Tojeiro et al. (2013).

Where the 20th century began with very little understanding of stellar properties

and life cycles, the 21st century is poised to serve as a similar, if accelerated timeline

for understanding of galactic lifetimes and morphologies. As discussed earlier, the

defining features of each class of galaxy have been well-defined, with nearly a centuy

of study to reinforce it. The life cycle and evolutionary timeline of different galaxy

morphologies are still being developed, and a focus of much contemporary extra-
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galactic research.

When Edwin Hubble first published his findings on galaxies and their varied mor-

phologies, his initial classification system became known colloquially as the Hubble

Tuning Fork, seen in figure 1.1. This diagram is the reason for the early- and late-type

galaxy monikers Buta (1992). In this system, Hubble believed that ellipticals, placed

along the ”handle” of the tuning fork were the starting point of galaxy evolution.

Along the two ”prongs” of the Tuning Fork were spiral galaxies that Hubble deemed

to bwe older, more evolved systems. These designations now seem to be backwards,

as early-type galaxies (ellipticals) posses older stars, and late-type (spirals) are con-

verselt dominated by recent star formationButa (1992). Hubble’s initial belief was

that galaxies began as ellipticals and eventually grew into spiral galaxies later in their

lifetimes. However, later studies following Hubble’s initial publications found that it

was physically impossible for the elliptical galaxies to “grow” the characteristic arms

of spirals Buta (1992). Later work by DeVaucouleurs produced what is called the

Hubble-DeVaucouleurs Trident, as DeVaucouleurs added an additional ”prong” to

the Tuning Fork with the inclusion of irregular galaxies Buta (1992). While there

has been further work breaking down extra-galactic morphology into more specific

descriptors depending on other subtypes of galactic class, much of contemporary dis-

cussion on galaxies still utilizes the Hubble-DeVaucouleurs Trident as a basis.
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Figure 1.1: The original Hubble Tuning Fork, one of the first attempts to devise a
sequence for the evolution of galaxy morphology, the Tuning Fork gained
its name from the proposed evolutionary sequences striking resemblance
to the two-pronged tool of the same name. Figure courtesy NASA/ESA.
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Figure 1.2: The more contemporary Hubble-DeVaucouleurs Trident, which includes
the updated classification of galaxies, and subsequently has an additional
prong. Figure courtesy NASA.

1.2.2 Off-Color Galaxies

A Recent focus of contemporary extra-galactic research has been in what could be

considered outliers, which are galaxies that do not follow known or accepted trends.

These atypical cases may help to solidify an understanding of the evolutionary time-

5



line of galaxies and can help to inspire new hypotheses that may answer questions as

to how particular types of galaxies or features of galaxies may come to be. One of

the more prominent areas of study as far as outlier galaxies are concerned is off-color

galaxies. These off-color galaxies act as outliers to conventional wisdom surrounding

the evolution and general ages of different types of galaxies.

Typically, a spiral galaxies are younger than ellipticals, at approximately 1 Gyr

to 8 Gyrs in age. as they have had less time to collapse and therefore still have the

greater structure. The morphological peculiarities of spiral galaxies, particularly their

namesake spiral arms, are prime locations for greater rates of star formation. These

spiral arms are abundant with neutral hydrogen, the fuel source from which new

stars are formed. Because of this, spirals tend to posses a higher density of young O-

and B-type stars which burn much brighter and bluer than many other stats. These

very hot stars have significantly shorter life spans than many other stars on the main

sequence, in the range of only 500 kyrs Tojeiro et al. (2013); Schawinski et al. (2014);

Bennett et al. (2013).

Conversely, ellipticals, which are older, with ages in ranging from 8 Gyrs to 13

Gyrs, having had more time to evolve, have nearly no star-formation. Because of

this advanced age, the bright O- and B-type stars so prevalent in spirals have already

burnt out and, with the much lower rate of star formation in ellipticals, have not

been replaced. This means that the spectra of these older elliptical galaxies are then

dominated by the comparatively dimmer and redder, but significantly longer lived K-

and M- type stars Tojeiro et al. (2013); Haines et al. (2015); Bennett et al. (2013).

The standard understanding is that spirals are blue and ellipticals are red. Off-

color galaxies are then red spirals and blue ellipticals. These off-color galaxies buck

the known trend, indicating that the age of these atypically colored galaxies may be

different than expected, or that the star formation rates in these types of galaxies

has been shifted significantly for some unknown reason. Because of this mystery
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surrounding these galaxies, much research has been devoted to understanding what

led to these galaxies forming in such odd ways Tojeiro et al. (2013); Bennett et al.

(2013).

Figure 1.3: Hertzsprung-Russell Diagram (HRD). The diagram shows different stellar
classifications along the main sequence, which is the line that connects
the hot, bright, young blue stars seen in the upper left to the cold, red,
long-lived red stars in the lower right. Standard ellipticals are made up
of K- and M-type stars, while blue-light dominated spirals are composed
of O- and B-type stars. Image via Bennett et al. (2013)
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Figure 1.4: A visual comparison of on- and off-color galaxies. Note the on-color blue
spirals and red elliptical as well as the off-color red spirals and blue ellip-
tical Tojeiro et al. (2013)

1.3 An introduction to Big Data

Big Data is a field of Computer Science that emerged relatively recently, within the

past 15 years, and has developed incredibly rapidly as more and more companies and

other organizations realize the value of analyzing a variety of data on a massive scale.

While the term may seem ambiguous at first, there exist a set of several parameters

that qualify something as data fit for analysis by one of several classes of Big Data

tools.

The primary qualifiers of Big Data are a set of three aspects known as the three

Vs: Volume, Velocity, and Variety Garofalo et al. (2016). Of the three, volume is

likely the most straightforward, as it refers simply to the amount of data that exists

within a particular database. In current terms, the bare minimum for being a good

candidate for analysis by Big Data tools is that the database contains at least on the

order of hundreds of Terabytes, where each Terabyte is 1000 Gigabytes. Once more,

the volume refers only to the amount of data extant within the system.

The second of the three big Vs is Velocity. Velocity is the rate at which raw data
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is generated and added into the database. Velocity also covers the amount of time

that it takes to clean or otherwise process the data into a form that is appropriate

for use in the database. A simple example of a high velocity data source is Google’s

search engine, which processes and logs well in excess of 3.5 Billion searches daily,

breaking down to 40,000 per second on average, of which each produces a number of

different data points including the actual term, top results, time searched, how long

the user looked at results, as well as the time the search occurred, among many other

aspects Garofalo et al. (2016).

The final of the three big Vs is Variety. This is also perhaps the biggest aspect

that can qualify a particular database as a prime candidate for analysis by Big Data

tools. Variety covers the different types of data within a data base, from sorted to

unsorted, to spectra vs query text to even different forms of data i.e. images vs

numerical readings vs data cubes. Another major component of data variety is that

of the existence of incomplete data sets or even a mix of data types where not every

row applies to each individual entry. These types of databases, while oftentimes much

more comprehensive, prove especially difficult for analysis in many cases. Because of

this, databases with great variety are some of the best fits for analysis by Big Data

tools Garofalo et al. (2016).

In more contemporary discussions surrounding big data there has been debate

over whether to add two additional Vs to the main discussion. These two proposed

additions are Value and Veracity. Value is of course referring to the varying levels

of value that different pieces of data might provide. A general example being the

difference in value between purchase rates of a particular item versus an individual

transaction, as there can be significantly greater insight gleaned from a purchase

rate versus an individual transaction. The second, perhaps more controversial of

the potential additions is the idea of Veracity. Veracity refers to how trustworthy a

particular segment of data or dataset is. This includes reliability and accuracy as
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well, which may vary depending on how measurement systems or other methods of

data collection vary for different categories within the database. Veracity as another

Big V is somewhat controversial because veracity may fall under the velocity umbrella

since velocity covers time to process and clean data, which may cover the analysis

and even filtering of data that may be too unreliable or inaccurate Ora.

An introduction to what might qualify a particular database for analysis by Big

Data tools is a great first step, but another key aspect to understanding this whole

process is understanding the different classes of Big Data tools. In the context of this

paper and its focus on astrophysics, three major categories of Big Data tools will be

considered: Machine Learning Algorithms, Data Mining Systems, and the broadest

category, Data Analysis tools.

The category of Machine learning algorithms can be further broken down into

two subcategories: supervised and unsupervised machine learning algorithmsBaron

(2019). Supervised machine learning algorithms are prepared for full use through

a three-stage process. The three stages are training, validation, and testing. The

training stage provides the algorithm with a relatively small set of data with well-

established target outcomes. This stage helps broadly tune the algorithm to ensure

that it produces results in a manner that is consistent and predictable. The next stage,

validation, provides the algorithm with a much larger amount of data with known

outcomes. Here, fine tuning of the algorithm takes place to help ensure proper sorting

by the algorithm and provide further basis that conclusions made from analysis by

the algorithm is sound. Finally, the test stage is entered, where machine learning

algorithms are fed data sets that are similar to those used to train and validate but

without predetermined outcomes. The test stage ensures that the algorithm handles

large amounts of data and makes consistent and accurate conclusions from similar

data sets. Supervised Machine Learning is perhaps the closest to traditional analysis

tools, as they are not too far removed from things such as the solver tool in Excel
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which helps to fit a trendline to data. However, supervised machine learning tools

are usually far more versatile than something like the Excel solver and can handle

significantly higher volumes of data Baron (2019).

An unsupervised machine learning algorithm is a vastly different tool from that of

the supervised machine learning algorithm. Where the supervised machine learning

algorithms help to find trends in data sets and analyze datasets in a way akin to how

researchers would by hand, the unsupervised tools work to find deeper connections

between large sets of data that may not be obvious in any amount of traditional

analysis. Unsupervised machine learning algorithms find these connections through a

varying range of statistical analysis methods, including clustering analysis, dimension-

ality reduction, visualization, and outlier detection. These algorithms are especially

useful in extracting useful data and even conclusions from datasets with very high

levels of statistical noise Baron (2019).

The next major category of Big Data tool is Data Mining. These tools perform

quite different tasks to those of either type of machine learning algorithm mentioned

above. The machine learning algorithms assist in producing models with data or

drawing conclusions from data while data mining tools are built more to handle the

“cleaning” and processing of raw data. These aren’t built to produce conclusions but

to handle large volumes of data and present it in a more readable manner with some

work to remove or flag outliers or any data that might seem impossible Garofalo et al.

(2016); Ball and Brunner (2010).

Lastly, Data Analytics tools can be discussed. These tools exist as somewhat of

a blend of the two previous categories, cleaning up and processing data while also

performing rigorous statistical analyses on the database as well. Their wide-ranging

application makes them the most versatile and often the most powerful tools one can

apply to a database or set of databases. Because of this, they are the tools most often

discussed whenever the topic of Big Data comes up.
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One of the most prominent tools in the category of Data Analytics is Apache

Hadoop, which is an open-source program utilizing MapReduce, a tool built by Google

to handle massive-scale data analysis across many networked computers or nodes.

MapReduce itself works with a Master computer with a series of worker computers,

assigned to either Map or Reduce. Once the master computer has broken the database

into manageable chunks, usually on the order of 16 to 64 megabytes, these individual

chunks will be sent to a Map worker which will search the chunk for whatever the

master computer dictates, and make note of the number of times that particular term

or value appears. Once the worker has completed analysis of that chunk, it will send

it along to a Reduce node that compiles that worker’s report with the reports of many

workers before passing its own report along for further condensation into a singular

node for analysis Dean and Ghemawat (2004).

Another important aspect of Big Data that is not strictly a Data Analysis tool

is the coding language Structured Query Language (SQL). This language is utilized

to pull specific sets of data from databases among many other applications in data

analysis, both in the field of Big Data and more broadly in many smaller data analysis

scenarios. It is built to be versatile and especially in working with databases and

database management.
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Figure 1.5: A visual representation of the how the Hadoop system functions and
distributes the work of the program.Image courtesy Google Research Dean
and Ghemawat (2004).

1.4 Combining Astrophysics and Big Data: Astroinformat-

ics.

While these first two subsections have done much to introduce the topics of extra-

galactic astronomy and big data at individual levels, there is significant overlap in

the two fields which only grows as the field of astrophysics continues generating in-

creasingly more data.

One of the best examples of this growing data velocity in the field of astrophysics

is to look at one of the more established astrophysical databases, the Sloan Digital

Sky Survey (SDSS). A comparison of the data volume and velocity of the SDSS versus

predicted volume and velocity of some telescopes and surveys set to come online in the

coming decade will be informative. As of Data Release 15, the SDSS contained nearly

200 Terabytes and gained 15 Terabytes between its 14th and 15th releases, which were
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approximately a year and a half apart SDS (2018). With no other context, this may

initially seem like quite a bit of information on its own and is almost definitely too

much for any individual research group, let alone single researcher to comb through

in any reasonable amount of time. This is still on the lower end of what might be

better suited for analysis by big data programs.

However, the coming decade is projected to see some observatories online with

nightly data velocity at or above that of that of the data contained in each SDSS

data release Marshall et al. (2017). One example is the Vera C. Rubin observatory,

also known as the Large Synoptic Survey Telescope, currently under construction in

Chile and expected to come online in 2021 and begin scientific observations by the fall

of 2022, dependent upon global circumstances. This telescope is projected to produce

well in excess of 10 Terabytes nightly, meaning that after just 20 days of observation,

the database for the Vera Rubin observatory will be larger than the SDSS in its current

iteration, which has been in operation since 2000. The large difference in data velocity

can be attributed to the unique style of sky survey that the Vera Rubin observatory

will be performing: a synoptic sky survey. Where more traditional surveys like the

SDSS will cover significant portions of the night sky, this coverage will occur over

several weeks to months or sometimes years. A synoptic sky survey, such as the case

of the Vera Rubin observatory will, on the other hand, image upwards of a quarter

of the night sky every single night Marshall et al. (2017). This has only recently

been enabled because of significant advances in sensor technology, data mining tools,

and affordable data storage solutions that help to produce workable, easily stored

data in a reasonable amount of time without significant issue. These synoptic sky

surveys provide a major advantage over more traditional surveys in that they allow

observations over time of much larger portions of the sky. Nightly observations of such

large sections of the night sky may open up many opportunities for new discoveries and

insights into short-term, large-scale behavior of many objects ranging from interior
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to the solar system to the far reaches of the universe. The Vera Rubin observatory

has 4 main goals: observations relating to Dark Matter and Dark Energy, general

observations of rapid events in the universe, studying the structure of the Milky Way

and close neighbors, and an inventory of Solar system objects and trajectories. Each

of these goals are largely quite different from one another and are on vastly different

scales, from within the Solar system to billions of light-years away. This reinforces

the idea that synoptic sky surveys are far-reaching and intensely important for new

discoveries across nearly every branch of astrophysics.

The data velocity of synoptic sky surveys, such as those produced by the Vera

Rubin observatory is not however the largest source of data predicted to come online in

the 2020s. Towards the end of the decade, the Square Kilometer Array, or SKA is set

to begin observations. This radio observatory, proposed to consist of, unsurprisingly,

one square kilometer of networked radio dishes set to observe from either the South

African desert or Australian outback, is predicted to have a much greater velocity.

At fully operational status, the SKA is set to produce over 150 Terabytes of Data

nightly, that is, it will produce three quarters of the amount of data in nearly 20 years

of SDSS’s operation on a nightly basis. This is a truly vast amount of data compared

to any previous astrophysical database and would absolutely require large-scale big

data systems to even properly handle and prepare the data nightly. Adding to the

complexity of this system is the fact that the SKA, observing in radio and millimeter

spectra, which are best suited for 3-dimensional visualization in the form of data

cubes, which help researchers identify greater structure in the universe. These cubes

are often fed into unsupervised machine learning algorithms to help reduce noise

in these cubes and even draw perform analysis and draw conclusions on their own

Hassan et al. (2010); Garofalo et al. (2016).

The proposal of these systems coincided with the introduction of a new term and

field in astrophysics: Astroinformatics. The international AstroInformatics Assoscia-
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tion (IAIA) was founded and held its first conference in 2010. It exists as a professional

organization and touts itself as a bridge field between Data Science and Astrophysics

as a whole. In subsequent years, several of the larger astronomical societies, such as

the American Astronomical Society (AAS) and the International Astronomical Union

(IAU), have also added subcommittees or working groups to themselves to address

this emerging field IAI (2020).

This paper contends, however that this is not enough. As discussed above, the

data velocity and consequently, data volume, continues and will continue to grow at

a blistering pace. There needs to be much more collaboration between big data and

astrophysics, and there must be a greater relationship between the fields than a small

society and a few subcommittees. Data driven astronomy will be the future and needs

to be addressed and moved into the mainstream.
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CHAPTER II

Methods

2.1 Overview

The Methods section will be broken into two separate sections. The first section

will discuss how the parameters were chosen for determining extra-galactic coloration

and morphology, and the second will discuss the initial implementation plans and

how the implementation changed throughout the process of collecting the candidate

galaxies.

2.2 Determining Parameters

There were several parameters chosen throughout this experiment. The five most

important helped to determine the color of the galaxy, the morphology of galaxy, and

ensuring that the object in question was in fact a galaxy.

Before the specifics can be discussed, the anatomy of querying the SDSS database

and the different terms involved in an SQL query of the database must be outlined.

The SDSS is sorted into many different tables, each containing many thousands of

columns, with each column pertaining to a particular type of data. For the purposes

of this paper, the four major columns of concern for the purposes of finding off-color

galaxies are the petroR50r, petroR90r, the Petrosian 50 Percent and 90 Percent radii
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in the r-band, respectively, as well as measures of galaxy brightness, cModelMagr and

cModelMagg. The choices will be further elaborated later in the coming subsections.

2.2.1 Galaxy color

Perhaps the most simple of all of the initial parameters was that of the color

of the galaxies. This was defined using the g and r band filters from the survey,

in accordance with convention and previous work in determining galaxy color from

the SDSS. There was further research into which particular g and r band column

to choose, which was selected once more based on convention. The final constraints

regarding the galaxy colors were determined to be that if the g-r value was greater

than 0.6, the galaxy was considered to be red. Similarly, if the g-r value was less than

0.4, the galaxy was categorized as blue. Galaxies lying within the 0.4 - 0.6 range are

considered to fall into what is known as the ”green valley” and disregarded for the

purposes of this experiment.

2.2.2 Petrosian Ratios

The next set of columns to include was that of the Petrosian ratio, which is used in

the classification of galaxy morphology. The Petrosian Ratio is based on the Petrosian

radius, which is a system for measuring galaxy flux that is built to account for the

lack of distinct edges and massively different distances from the observatory to many

different galaxies. The Petrosian radius is then essentially a measure of the radius at

which a certain percentage of the galaxy’s adjusted flux is present. For the purposes

of this thesis the 50 Percent and 90 Percent radii are used, with the Petrosian Ratio

being r50/r90 SDSS Collaboration and Blanton (2000).

With this knowledge in mind, and considering convention set forth by Fuse et al.

(2012), the petrosian ratios r50/r90 were utilized to enable differentiation between

different morphological types. Those galaxies with an r50/r90 ratio of less than or
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equal to 0.38 were considered elliptical galaxies. Any galaxies with an r50/90 of

greater than 0.38 were considered spirals.

2.3 Implementation

As alluded to earlier, there was an initial implementation plan that, due to several

issues with hardware compatibility as well as with the ways in which SDSS data was

made available, had to undergo significant changes. These changes are thoroughly

addressed in the revised implementation subsection Fuse et al. (2012); Graham et al.

(2005).

While there were some major changes to the implementation plan, the core con-

cepts for classifying off-color galaxies remained the same, based on the parameters

outlined in the above subsections. Combining these parameters, the two types of

off-color galaxies of interest, blue ellipticals and red spirals, could be identified. This

is accomplished by combining the parameters for color and morhpology. That is, a

blue elliptical would have a g - r value of less than 0.4 and a Petrosian ratio of less

than or equal to 0.38 while a red spiral would conversely have a g-r value greater than

0.6 and a Petrosian ratio greater than 0.38 Fuse et al. (2012).

2.3.1 Initial Implementation Plan

The initial implementation plan was to pull all galaxies from the SDSS with a

simple SQL query of all objects in the galaxy table, with their corresponding Petrosian

radii, g- and r- band magnitudes, as well as object IDs. The actual data analysis and

processing would have occurred in Hadoop. This initial plan would have combined

the power of Hadoop with the versatility of simple SQL queries to pull all the data

in one fell swoop.

In practice, however, a number of limitations and setbacks occurred that prevented

the execution of the project in this manner. While each individual limitation would
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have likely been easily overcome, the confluence of all of these issues made it easier to

move forward with a revised implementation as described in the following subsection.

The primary difficulties encountered were as follows. First, across several machines,

difficulties were encountered in installation of the prerequisite programs for analysis

with Hadoop, stemming from apparent compatibility issues across software versions.

Second, and perhaps most impactful, were the limitations placed upon queries to the

SDSS - any individual query would result in a maximum of 500,000 individual rows.

This was far too small of a sample, as the SDSS contains well over that amount of

galaxies, at over 3 Million. Each of these issues combined to produce a situation in

which a revised implementation appeared to be most practical.

2.3.2 Revised implementation

The revised implementation was relatively straightforward, forgoing the step of

pulling more or less raw data from the SDSS to be analyzed using Hadoop, and instead

creating a more complex SQL query that would enable a much more selective way of

pulling down data from the database. This revised implementation definitely included

application of deeper SQL knowledge in combination with astronomical knowledge

to make more informed queries. This was accomplished by entering the parameters

discussed above for red spirals and blue ellipticals into the query of the SDSS itself.
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CHAPTER III

Results

3.1 Results

3.1.1 Blue Ellipticals

The Query submitted to the SDSS in SQL is visible in 3.1.

A small sample of the approximately 500,000 Blue Elliptical candidates this search

returned is seen in 3.2.

Figure 3.1: The query for Blue Ellipticals entered into the SDSS. Note the Selection
from the Galaxy table, as well as the inclusion of the restricting parame-
ters.
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Figure 3.2: The first 10 rows of the sample are included below.

3.1.2 Red Spirals

The Query submitted to the SDSS in SQL is visible in 3.3.

A small sample of the approximately 400,000 Red Spiral candidates this search

returned is seen in figure 3.4.
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Figure 3.3: The query for Red Spirals entered into the SDSS. Note the Selection from
the Galaxy table, as well as the inclusion of the restricting parameters.

Figure 3.4: The first 10 rows of the Red Spiral sample candidates are included below
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CHAPTER IV

Discussion and Conclusion

4.1 Discussion and Conclusion

There are two major categories of conclusions to be made from this project. The

first is direct conclusions regarding the sample and its implications in the field of

astrophysics. These conclusions focus on the importance in the field and the new

information gained from this new dataset. The second conclusion will focus on the

wider implications of Astroinformatics research and the increasing reliance on Big

Data tools the field will face in coming years.

4.1.1 Conclusions from Data on Off-Color Galaxies

Reviewing the results of the project, significant numbers of off-color galaxies are

present as compared to what may have been expected. This begs the question of

whether or not these so-called galaxies are truly off-color or not. Perhaps, with

such a large sample being collected, there exists a wider range of galactic color.

Might spiral and elliptical galaxies be morphologically separate from one another,

and instead evolving in color? Could this long-standing notion of color association be

based solely on observations of the brightest, or oldest and most evolved galaxies? All

of these questions can only be answered through further experimentation and analysis

of this new sample.
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Another important point to be made is that this project appears to be unique in

categorizing and finding this many off-color galaxies. Essentially, this is a first-of-its

kind collection of off-color galaxy candidates and provides a very solid base for fur-

ther investigation into the origins and properties off-color galaxies. This larger-scale

collection of off-color galaxies can then allow for a broader analysis of the charac-

teristics of a large population of galaxies, as opposed to the smaller-scale studies of

individual galaxies or small samples that a majority of contemporary papers appear

to be researching Tojeiro et al. (2013); Schawinski et al. (2014); Haines et al. (2015);

Hao et al. (2019).

Furthermore, the large sample sizes fall almost directly in line with what was

intended from the outset of the project. This demonstrates well the importance of

persisting through setbacks and the advantages of adaptability and flexibility when

working on complex projects. Where minimal results may have been achieved using

the initial methods laid out, a willingness to adapt and work to find more effective

solutions produced favorable results. These results may not have been achieved if the

original methods had been followed, given the technical and compatibility limitations

that were discovered, as described in the methods section.

4.1.2 Conclusions on Astronomy and Big Data

The level of analysis in the current work would not be possible utilizing more

traditional astrophysical methods, due to the sheer amount of data present and the

level of analysis needed for each individual galaxy being investigated. The current

project, while reasonably novel in its particular focus and application of the Big Data

tools utilized, is similar in scope and, in many ways, execution to many possible future

experiments (reference the Vera Rubin telescope). This thesis should then act as an

example of how to move forward in many projects within the field of extra-galactic

research, and even more broadly throughout many different sub-fields of astrophysics.
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With the success of this project, and several projects with similar methods, much

greater emphasis must be placed on working to increase the presence of Big Data in

astrophysics. Promotion of the field of Astroinformatics would seem to be obvious

based on the techniques and successes outlined in this thesis.

The expansion of the field of Astroinformatics must occur in order to begin to

further modernize the field of astrophysics and allow for more robust analyses of the

ever-increasing amounts of data available to researchers. As discussed at length in

previous sections, the amount of data available to researchers is already far more than

is practical to analyze by more traditional means. With data volumes expected to

increase to 150 TB nightly by the end of the decade, as opposed to the contemporary

15 TB in 18 months, the sheer scope of information will extend far beyond impractical

and quickly become a necessity to not only use Big Data tools to perform meaningful

research on the data, but data mining tools will have to be implemented in order to

simply output useful data to a database at the expected data velocity Garofalo et al.

(2016).

The fast-approaching massive increase in data velocity across nearly all new data

sources will bring with it a shift in the role of Big Data in astronomy. As outlined in

previous sections and discussion overall, the magnitude of data velocity will necessi-

tate Big Data tools to simply condense the influx of data into something that can be

effectively published to a database within a reasonable time-frame. The fact that Big

Data tools will be necessary for this first step alone also indicates that more Big Data

tools will be required in order to sift through such massive volumes of data. Within

the coming decade, Big Data tools will shift from a useful application in performing

research on astrophysical data, to a necessity component of processing and analyzing

these data. Therefore, a significant shift must occur in the way researchers view and

employ astroinformatics techniques.
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CHAPTER V

Future Work

There are two major areas for future work to occur regarding the current research

and the subsequent results. The first area of future work, is improving the experiment,

primarily by focusing on ways to clean the data and better eliminate any false positives

or other noise within the dataset. In the middle-term, a better user experience could

be developed, which will be discussed in detail. The section immediately following

that will then discuss long-term goals for future work. This includes the fact that a

wider scope can be taken, building out the program and whatever user experience is

developed to allow a wider range of applications within astrophysics, such as some of

the other rare examples of purpose-built programs for astroinformatics.

5.1 Improving the Experiment

Perhaps the most significant step to improve this research is the Hadoop analysis

used to clean the SDSS data while providing a more in-depth analysis. The major

hurdles to implementing a Hadoop improvement were previously discussed. However

given more time, the barrier of the 500,000 row limitations of the SDSS query output,

as well as other technical and hardware complications and incompatibilities could be

worked out. With the benefit of longer time, a more refined data output would be

possible using Hadoop’s greater analysis and filtering abilities.
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One aspect of the Hadoop implementation could Include stricter parameters to

filter out noise or subprime candidates from being included in the initial dataset.

The factor that prevented implementation here, was finding an effective qualifiers for

noise and subprime candidates that were easily distinguishable and contained to just

one or two parameters within the SDSS. Another step that could be taken would

be to filter out high angle galaxies, which may qualify as subprime candidates due

to incomplete or improper spectra which lead to a high false-positive rate. This is

a specific example of one of the challenges in filtering these poor candidates, as it

is difficult to determine effective parameters that are easily accessible solely through

SDSS columns.

While the previous two experimental improvements could be implemented in the

relative short term, a more medium-term development could be to develop a UI to

make analysis easier and more accessible to those unfamiliar with the analysis tools

utilized in this experiment. A UI would allow for a broader variety of people to utilize

the tools and enact their own restrictions to widen or narrow the search to their liking.

The subsequent galaxy samples identified would create a more diverse super-set of

samples to allow for more robust cross-referencing ability.

5.2 Long-Term work

In regards to possible longer term steps for this project, a broadened scope has the

most potential for researchers. A broader scope could include the development of a UI

to perform different and varied analyses beyond the creation of databases of off-color

galaxies. There could be expanded work and a shell built around the analysis tools

and through the UI to allow greater customization of parameters investigated and

restrictions on data and tables. This would potentially allow a much wider range of

opportunities for new discoveries, and once more indicate that there is great potential

in introducing Big Data tools to a wider range of problems. The success would ensure
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astroinformatics would play an ever-growing role in astronomy in general.

That leads into the final step of expanded work: general promotion of the field

of astroinformatics. With the success of this project, and if further clean-up and

development of the project occurs the project could serve as a signpost for the benefits

of astroinformatics and the general increased involvement of data-science in an ever-

increasingly data-rich field.
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