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in Figure 5 (Fig. 2 of Reid 1973) [29]. In addition, Kollmeier & Raymond showed recently

that moons on wide orbits are most likely to host a stable submoon [31]. Thus, preliminary

research indicates that moons with large orbital radii are best suited to hosting submoons.

Figure 5: This figure, from Figure 2 of Reid (1973) shows the theoretical stability regions of
submoons as a function of the relative submoon mass (µ = Msubmoon/Mmoon) and the scaled
moon semi-major axis (as = rs

Rp
). Region I describes the area where there are no stable

submoons, while Region II describes the area where submoons could survive. Some moons
of the Solar system are shown for comparison [29].

Another main focus of both moon and submoon research is the mass of the bodies involved

(i.e. planet and moon and submoon). Of course, when investigating submoons, there are

three bodies to consider, instead of the two bodies interacting in the planet-moon system.

The addition of this third body, greatly complicates the system. After all, the so-called

“three-body problem” in classical mechanics has no general closed-form solution, and for the
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majority of initial conditions the resulting system is chaotic and requires numerical methods

to be solved [32]. In the past, submoon research has circumnavigated this problem either by

assuming that each mass is much larger than the next, or by treating the masses as point

sources [29, 30, 31].

Thus far, submoon research has focused heavily on the mass ratio between the moon and

submoon, rather than their individual masses. Recent results show that small submoons, as

compared to their host moon, are stable over a wider range of moon semi-major axes and

for a longer lifetime [29, 30]. As seen in Figures 4 and 5, a study of a small number of ratios

shows that higher mass ratios result in decreased submoon lifetimes and smaller stability

regions. In Figure 4, the curves indicate different submoon-moon mass ratios. Larger mass

ratios correspond to larger submoons in relation to the moon. Here, it can be seen, that

as the mass ratio increases, the curve becomes flatter, indicating that submoons survive

for a shorter period of time at large orbital radii. Similarly, in Figure 5, the mass ratio

between the submoon and the moon is plotted on the y-axis while the moon’s semi-major

axis is plotted on the x-axis. For large mass ratios, the region of possible surviving objects

shrinks. In fact, as the mass ratio increases, the necessary moon semi-major axis for a stable

submoon also increases [29]. In contrast to historical studies, Kollmeier & Raymond (2019)

were able to study the individual masses of the moon and submoon. They found that smaller

submoons are stable over a broader range of moon radii and semi-major axes, while larger

moons are also more likely to host stable submoons [31]. Thus, both historical and more

recent submoon studies show the increased stability of small submoons orbiting relatively

massive moons.

Counterintuitively, Conway (1985) also identified a critical submoon mass below which

submoons are not stable at a given eccentricity and semi-major axis. This critical submoon

mass results from the study of ‘Hill Type’ stability, which does not account for orbital

evolution over time, tidal forces, or interactions from other bodies [30]. Thus, though Conway
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does identify a minimum submoon mass, this mass is based on highly simplified calculations

and should be further studied through simulations that take many more factors into account.

In addition to the intrinsic properties of the bodies such as the planet, moon, or submoon,

there are processes that may affect the stability of moons, and therefore probably submoons

as well. Though many of these processes have yet to be investigated in the context of

submoons, the impact of tidal forces on submoons has been studied to an extent. Just as

tides on a moon from its host planet cause it to undergo tidal migration, thereby removing

its moons [16], tides on submoons from host-moons also cause orbital decay [29]. Reid found

that when the moon’s spin frequency is below the submoon’s orbital frequency, tides from the

moon, ‘drain’ the orbital angular momentum of the submoon and cause tidal decay. This

may lead to destabilization of submoons and eventual collisions with the moon itself. In

contrast, Conway (1985) found that tides actually circularize the submoon’s orbit and have

a stabilizing effect [30]. These opposing findings are the result of two different computational

approaches to the problem. However, now that new computational methods and technologies

have been developed, this problem may be reinvestigated to fully understand the true impact

of tides on submoon stability.

Though not a lot of work has been done on submoons, a good basis has been laid for

future work. One of the most recent submoon studies by Kollmeier & Raymond (2019)

provides a succinct overview of the current knowledge on submoon stability shown in Figure

6 (Fig. 1 of Kollmeier & Raymond). This figure summarizes theoretical submoon stability

zones around the moons of planets in our own Solar system. For each planet, the moons

are shown as black circles on a grid of orbital distances versus moon radius. The stability

zones in this space are then mapped out for submoons of various size. The dotted line

represents submoons with a radius of five kilometers, the solid line represents a radius of ten

kilometers, and the dashed line represents twenty kilometers. As the orbital distance and

radius of the moon increase, so does the stability probability of the submoons. In addition,
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larger submoons generally have smaller stability regions than small submoons [31]. These

findings are extensions of the work of Reid (1973) and Conway (1985) and agree with their

results.
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Figure 6: This figure from Figure 1 of Kollmeier & Raymond (2019) shows the stability
regions of submoons around the outer planets of the Solar system, along with Earth and
Kepler-1625b, as a function of orbital distance and radius of the moon. The gray area
indicates the region in the parameter space where submoons with a radius of ten kilometers
are stable for at least the age of the Solar system. In addition, the dashed line shows the
border of the stability region for twenty kilometer submoons while the dotted line shows
the border for five kilometer submoons. The moons of each planet are plotted within this
parameter space as well [31].

Overall, though some early work has been done to investigate the factors affecting sub-

moon stability, there is much more left to uncover. Many mechanisms and phenomena have

24



yet to be accounted for in theoretical or computational models. For example, the effects

of neighboring bodies including perturbations from the star and planet, perturbations from

neighboring planets, and forces from additional moons have yet to be modeled. Additionally,

the properties of the submoon such as inclination, eccentricity, and pro- and retrograde or-

bits have not been considered. Furthermore, because a submoon orbits a moon, the motion

of that moon due to tidal forces must also affect the submoon. Lastly, most existing sub-

moon studies have focused on short time scales, and more research is needed to investigate

long-term stability.

Many of these open questions about submoons require simulations that take many factors

into account at once, including gravitational forces from the star, planet, and any additional

moons. This can be accomplished using an N-Body code that accounts for all bodies in the

system and their interactions over time.

2 Computational Methods for Studying Submoon Sta-

bility

2.1 N-Body Legacy Code

In order to simulate a possible submoon system, a Fortran N-Body code was used. This

legacy code calculates the equations of motion for each body in the system as well as the

forces between bodies. The original two- dimensional code was developed by Craig Agnor

at the Miami University, Ohio in 1996 and was based on the Hermite Integrator with Indi-

vidual Timestep Scheme (HITS) algorithm. The code was consequently improved as a third

dimension was added by Himburg (1998) and gas drag was added by Bullard (1999). The

code was also extended to include asteroids, rigid body rotation, and planetary satellites

(Abel 2001; Carpenter 2001; Fuse 2002).
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For each initialized body, the code designates a time (ti), timestep (∆ti), position (Xi),

velocity (vi), acceleration (ai), and jerk (d~ai
dt

). The equations of motion for the bodies are

then calculated over a series of iterative steps. First, the calculations are advanced to the

first relevant time. This is done by selecting the particle with the smallest value of ti +∆ti is

selected and setting the global time within the code, t, to this value. The predicted positions

and velocities of all the particles are then calculated at this time t. This is accomplished

through third order Taylor expansions given by

~Xp,j =
(t− tj)3

6

d~aj
dt

+
(t− tj)2

2
~aj + (t− tj) ~vj + ~Xj, (7)

where ~Xp,j is the predicted position of particle j which had a position of ~Xj, a velocity of

~vj, an acceleration of ~aj, and a jerk of
d ~aj
dt

at time tj, and

~vp,j =
(t− tj)2

2

d~aj
dt

+ (t− tj) ~aj + ~vj, (8)

where ~vp,j is the predicted velocity of particle j which had a velocity of ~vj, an acceleration

of ~aj, and a jerk of
d ~aj
dt

at time tj. The index j is run through all particles in the simulation.

Using these predicted values for position and velocity at time t, the acceleration and jerk

are then calculated. The acceleration of each body due to gravitational forces is found by

summing the gravitational interactions between each object as given by

~ai =
∑
j 6=i

[
Gmj ~rij
r3ij

], (9)

where G is the gravitational constant, mj is the mass of an object, and ~rij is the distance

between the ith and the jth objects defined by ~rij = ~Xp,j − ~Xp,i. Correspondingly, the jerk,

which is defined as the instantaneous change in acceleration, is calculated via the derivative
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of the acceleration and can be described by

d~ai
dt

=
∑
j 6=i

Gmj

[
~vij
r3ij
− 3

~rij ( ~vij · ~rij)
r5ij

]
, (10)

where G, mj, and ~rij are defined as above and ~vij is the relative velocity between the ith and

jth objects given by ~vij = ~vp,j − ~vp,i. The predicted position and velocities values are then

corrected using a third order Hermit interpolation polynomial such that

~Xi (ti + ∆ti) = ~Xp,i +
∆t4i
24

d2 ~a0,i
dt2

+
∆t5i
120

d3 ~a0,i
dt3

, (11)

where ~Xi (ti + ∆ti) is the position of the ith particle at time (ti + ∆ti), ~a0,i is the acceleration

of body i at the global time t, and

~vi (ti + ∆ti) = ~vp,i +
∆t3i
6

d2 ~a0,i
dt2

+
∆t4i
24

d3 ~a0,i
dt3

, (12)

where all values are defined as above. The corrected acceleration of body i can be found by

~ai (t) = ~a0,t + ∆t
d ~a0,i
dt

+
∆t2

2

d2 ~a0,i
dt2

+
∆t3

6

d3 ~a0,i
dt3

, (13)

where ~a0,t is defined as above,
d ~a0,i
dt

is the jerk of the body calculated at the global time, t,

and ∆t = t− ti.

The second and third derivatives of the acceleration used in these corrected position,

velocity, and acceleration calculations are given by

d2 ~a0,i
dt2

=
−6 ( ~a0,i − ~a1,i)−∆ti

(
4
d ~a0,i
dt

+ 2
d ~a1,i
dt

)
∆t2i

, (14)
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and

d3 ~a0,i
dt3

=
12 ( ~a0,i − ~a1,i) + 6∆ti

(
d ~a0,i
dt

+
d ~a1,i
dt

)
∆t3i

, (15)

where ~a1,i and
d ~a1,i
dt

are the acceleration and jerk calculated at time ti + ∆t.

Once the position and velocity vectors for a particle have been corrected, the code calcu-

lates a new timestep using the acceleration and its time derivatives. This timestep calculation

was developed by Aarseth (1985) and is given by

√√√√√√η
| ~a1,i|

∣∣∣d2 ~a1,i
dt2

∣∣∣+
∣∣∣d ~a1,i

dt

∣∣∣2∣∣∣d ~a1,i
dt

∣∣∣ ∣∣∣d3 ~a1,i
dt3

∣∣∣+ | ~a1,i|2
, (16)

where η is an adjustable parameter controlling the accuracy of the program. The acceleration

and jerk are calculated directly from Equations 9 and 10, while the second derivative is given

by

d2 ~a1,i
dt2

=
d2 ~a0,i
dt2

+ ∆ti
d3 ~a0,i
dt3

, (17)

where the derivative values are defined by Equations 14 and 15 and ∆ti is the initial timestep.

The third derivative term in Equation 16 is constant due to the use of a third order inter-

polation where all higher derivatives are taken to be zero.

Using this new timestep for each particle, the program identifies the new smallest value

of ti + ∆ti and the process is repeated.

This code can be used to simulate the motion of astronomical bodies such as planets,

asteroids, and satellites. In addition, it has been used in the past to successfully simulate

planet formation[33] and planet migration, such as Thommes model migration in which

proto-Uranus and -Neptune are formed on orbits between Jupiter and Saturn and are then

ejected to their current stable orbits through gravitational resonances [34].
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2.2 Data Analysis Codes

The output of the planet formation code includes information about collisions within the

system, the energy of the bodies, and the initial orbital parameters of the objects including

mass, density, radius, semi-major axis, eccentricity, and inclination. In addition, the code

outputs the three-dimensional positions and velocities of each body for each time step. This

data, while useful can be difficult to sift through, so two different analysis codes are used to

extract useful values from the given data: one for planets and one for moons.

The planet data analysis code reads the Cartesian velocity and position values of each

object and converts these values to ecliptic coordinates. Its outputs include the mass, semi-

major axis, eccentricity, and inclination of each individual body at a certain, user-defined,

time. These ecliptic coordinates allow for easier analysis of the data through the comparison

of semi-major axes, eccentricities, and inclinations for different bodies and over time.

The cartesian to ecliptic conversion is done using the solutions to Kepler’s equations

outlined in Danby (1988) [32]. Kepler’s equation, given by

M = E − esinE, (18)

describes the motion of a body on an elliptic orbit, where M is the mean anomaly, E is the

eccentric anomaly, and e is the eccentricity of the orbit. The mean anomaly, M , describes

the angular distance from the pericenter at time t and is given by

M = n (t− T ) , (19)

where n is the mean angular motion of the body and T is the time at which the body is at

the pericenter. The eccentric anomaly, E, also describes the angular position of the body
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along its orbit and is defined by

r = a (1− ecosE) , (20)

where r is the distance from the focus to the body, a is the semi-major axis of the ellipse,

and e is again the eccentricity [32]. From Equations 18, 19, and 20, the cartesian coordinates

of the body with the origin at the attracting focus of the ellipse are given by

X = a (cosE − e) , (21)

Y = a
√

1− e2sinE, (22)

Ẋ = −na
2

r
sinE, (23)

and

Ẏ =
na2
√

1− e2
r

cosE, (24)

where the variables are as defined above [32]. These relations are thus used in the planet

analysis code to convert from cartesian to ecliptic coordinates.

The moon data analysis code is very similar in structure and function to the planetary

analysis code. It works using the same method, but finds the ecliptic coordinates of moons

in relation to a user-defined mother planet rather than in relation to the Sun.

2.3 Additions to the Code

In order to simulate submoons, a subroutine was added to the existing planet formation

code. First, the option to call this subroutine and introduce a submoon into the system

was added to the main body of the code. This was done using a switch and an If-Then

statement. It was specified that the submoon could only be added if a moon was also added
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to the simulation. Within this If-Then statement, the user can specify around which planet

and moon the submoon should orbit, if there are multiple bodies in the simulation.

The submoon subroutine itself was based heavily on the existing moon subroutine, which

places a moon around a user-specified planet. It was, however, changed to account for the

submoons orbit around a moon instead of a planet and required data about the host moon’s

mass and heliocentric coordinates in addition to those of the planet.

The subroutine places bodies with user-specified characteristics such as mass, density,

eccentricity, inclination, and radius around the nth body in the simulation at a given semi-

major axis. The initial ecliptic coordinates are then converted to heliocentric coordinates

so that they are in the same coordinate system as the other bodies in the simulation. This

is accomplished first through the addition of a new subroutine which reverses the cartesian

to ecliptic calculation described above to convert the positions and velocities of submoons

from ecliptic to Cartesian coordinates. The resulting Cartesian coordinates of the submoon

are relative to the parent moon, so the heliocentric parent moon positions and velocities are

added in order to describe the location of the submoon relative to the Sun. This body is

then introduced into the system and the process described in Subsection 2.1 continues.

A submoon data analysis code was also created to convert the Cartesian output of the

main planet formation code to moon-centric ecliptic coordinates. This code uses the same

methods described for the planet and moon data analysis codes, calculating relative to a user-

defined moon rather than relative to a planet or the Sun. Though the methods for converting

between Cartesian and ecliptic coordinates described earlier are based on a two-body system,

they must still be used for the three-body system, simply because the three-body system

is infinitely more complex and has no ‘easy’ solutions. However, due to the fact that the

majority of the forces acting on the submoon stem from the moon and the large number of

trials that are conducted in any study, the effects of this discrepancy become negligible.
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3 Results

3.1 Earth, Moon, Satellite System

Because there are no known submoons, the new submoon subroutine was tested by placing

a fictional submoon around the Earth’s moon. This submoon body is based loosely on the

Explorer 35 lunar satellite, which orbited the moon for a short period of time [35, 36]. The

three bodies initialized in this test code were the Earth, its Moon, and the Lunar satelite

(EMS). The orbital and physical parameters are summarized in Table 2.

Table 2: This table shows the orbital and physical parameters of the intialized bodies for
the first set of trials. The planetary characteristics were based on the Earth, while the moon
characteristics were based on the Moon. The submoons characteristics were based loosely on
past lunar satellites. The semi-major axis listed for each body is given relative to its host.

Once the code was running and the output values seemed reasonable, the actual behavior

of the planet, moon, and submoon over time was investigated for the configuration of bodies

described by Table 2.

Initially, the simulations were run for 10,000 years, with a timestep of 500 years, meaning

that the values for each body were updated every 500 years. These simulations showed that

both the moon and the planet were on stable orbits around the Sun, but the behavior of
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the submoon was scattered. This can be seen in Figure 7, where the blue and green points

represent the planet and moon, respectively, while the red points show the submoon’s x and

y positions. In addition, Figure 8 shows the motion of the submoon relative to its host moon.

The submoon could be in orbit around the moon, though there are not enough data points

to clearly identify a trend. In addition, its motion relative to the Sun indicates that it might

be in orbit around the star rather than the moon. This could indicate a problem with the

code or merely and unstable submoon.

Figure 7: This figure shows the positions of the planet, moon, and submoon with the char-
acteristics given in Table 2 in the x-y plane relative to the Sun. The simulation was run to
10,000 years with a timestep of 500 years. The blue, green, and red points correspond to the
planet, moon, and submoon respectively.
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