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Coupling of transverse and longitudinal waves in piano strings

Nikki Etchenique, Samantha R. Collin, and Thomas R. Moorea)

Department of Physics, Rollins College, Winter Park, Florida 32789

(Received 13 November 2014; revised 20 March 2015; accepted 23 March 2015)

The existence of longitudinal waves in vibrating piano strings has been previously established, as

has their importance in producing the characteristic sound of the piano. Modeling of the coupling

between the transverse and longitudinal motion of strings indicates that the amplitude of the longi-

tudinal waves are quadratically related to the transverse displacement of the string, however, exper-

imental verification of this relationship is lacking. In the work reported here this relationship is

tested by driving the transverse motion of a piano string at only two frequencies, which simplifies

the task of unambiguously identifying the constituent signals. The results indicate that the generally

accepted relationship between the transverse motion and the longitudinal motion is valid. It is fur-

ther shown that this dependence on transverse displacement is a good approximation when a string

is excited by the impact of the hammer during normal play. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4916708]

[JW] Pages: 1766–1771

I. INTRODUCTION

Modeling the sound of the piano requires a quantitative

understanding of each of the components involved, as well

as the interactions between them. Recently, Chabassier et al.
have proposed an extensive model that includes many of the

interactions between the constituent parts of the piano.1 Of

particular importance to this work, as well as other efforts to

model the piano, is the manner in which the string motion is

simulated. Arguably, the string motion is the most important

component in creating the piano sound, therefore an under-

standing of the motion of a struck string is critical to produc-

ing an accurate model.

The motion of strings clamped at both ends is well

understood, however, this situation is only an approximation

to the motion of the strings in a fully assembled piano

because the finite impedance of a piano bridge means that

one end of the string is not completely immobile. Other com-

plications include the fact that the string extends beyond the

bridge pin, most strings occur in pairs or triplets, and some

are wrapped in copper wire to increase the linear density.2–5

In addition to the recent focus on these complications,

research within the past two decades has shown that piano

strings vibrate in the longitudinal direction, which produces

significant audible effects.3,6 The origin of these longitudinal

vibrations and their relationship to the transverse motion are

the subject of the work reported here.

The presence of transverse waves in vibrating piano

strings has been both theoretically investigated and experi-

mentally verified, and a complete quantitative understanding

is near. However, questions regarding the origins of longitu-

dinal waves in piano strings remain unanswered. Recent

studies indicate that longitudinal waves significantly contrib-

ute to the piano sound,6 but the excitation mechanisms that

initiate these waves are still not completely understood.7

Theoretical work on the longitudinal vibrations in strings

dates back to the middle of the last century,8 and there has

been significant progress within the last 20 years.9–13 This

body of work has resulted in a model describing the induced

longitudinal motion that is generally accepted by the scien-

tific community, but to our knowledge there has been no ex-

perimental evidence to support it.

It appears that the presence of audible longitudinal

vibrations in the sound of a piano was first reported by

Knoblaugh in 1944.14 Knoblaugh referred to the resulting

sound as a clang tone and posited that the motion of the ham-

mer tangent to the string induces the longitudinal vibrations

that produce it. Over 50 years later, unaware of Knoblaugh’s

work, Conklin investigated longitudinal vibrations in piano

strings. He referred to the sounds attributable to these vibra-

tions as phantom partials and suggested that these inhar-

monic partials were due to longitudinal waves produced by

nonlinear coupling with the transverse motion.15 Giordano

and Korty experimentally investigated these longitudinal

vibrations by measuring the motion of the bridge and sound-

board as the hammer strikes a piano string.7 They concluded

that the magnitude of the longitudinal motion is nonlinearly

related to the transverse displacement induced by the ham-

mer, but unfortunately they could not conclusively determine

the relationship between them.

The theoretical basis for the nonlinear coupling of trans-

verse and longitudinal motion in strings was first discussed

by Morse and Ingard in 1968.8 Based on this work, Bank

and Sujbert noted that the amplitude of the longitudinal

vibrations should be quadratically related to the transverse

displacement of the string, and that although the measure-

ments of Ref. 7 did not explicitly identify the power of the

nonlinearity, their work did confirm a nonlinear relationship

between the transverse and longitudinal excitation.16 More

recent work has added a more rigorous theoretical basis,11–13

but experimental evidence has been lacking.

In the work reported here we confirm that longitudinal

standing waves can be produced by the nonlinear coupling

a)Author to whom correspondence should be addressed. Electronic mail:

tmoore@rollins.edu
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of transverse standing waves in real piano strings.

Furthermore, we show that the acoustic power of the sound

produced by these longitudinal vibrations in a piano is line-

arly proportional to the power in each of the two transverse

waves that produce them. Therefore, when the amplitudes of

two transverse waves are linearly related, as they may be

when they are produced by the piano hammer striking the

string, the amplitude of the longitudinal wave is proportional

to the square of the transverse string displacement.

In what follows we first briefly review the theoretical

basis for the coupling between transverse and longitudinal

waves in strings. We then present the results of experiments

indicating that the model can accurately predict the motion

of a piano string in situ. Specifically, by driving a piano

string such that only two transverse waves exist on the string,

we show that the longitudinal vibrations occur at the pre-

dicted frequencies and are linearly proportional to the ampli-

tude of each of the transverse waves. We then provide

evidence that this is an excellent approximation for predict-

ing the response of a piano string when struck by a hammer

during normal play.

II. THEORY

Two types of longitudinal waves have previously been

identified in piano strings. The first are referred to as free-

response longitudinal waves, and they occur at frequencies

associated with the longitudinal resonance frequencies of

the string. The frequencies of these resonances are deter-

mined by the length of the string and the speed of sound in

the material. The second type is termed a forced-response

longitudinal wave; these waves are induced by the nonlin-

ear mixing of transverse waves in the string and can occur

at frequencies other than those associated with the longitu-

dinal resonances. The theory describing the nonlinear

motion of the string was originally addressed by Morse and

Ingard8 and recently expanded upon by several authors,

including Bank and Sujbert,16 Bilbao,11 and Chabassier and

Joly.13 Alternative theories also exist, see, for example,

Refs. 5 and 9, however, they all result in the same predic-

tions concerning the dependence of longitudinal waves on

the transverse displacement. Here we do not reproduce the

theory in detail, but only seek to provide enough back-

ground to understand the experimental evidence presented

in Sec. III.

An element of a piano string at equilibrium with length

dx and a corresponding element of a stretched piano string

with length ds are shown in Fig. 1, where y and n are the

transverse and longitudinal displacements of the string,

respectively. It has been shown that by expanding both y and

n as a series of polynomials and truncating at third order, the

added force per unit length on the element in the longitudinal

direction caused by the transverse displacement is given

by11,13,16

Fx ¼ ES
@2n
@x2
þ ES� T0

2

@ @y=@xð Þ2

@x

� �
; (1)

where E is Young’s modulus, S is the cross sectional area of

the string, and T0 is the tension on the string when there is

no displacement. A complete derivation of Eq. (1) can be

found in Appendix B of Ref. 13.

The first term on the right hand side of Eq. (1) represents

the component of the force in the direction parallel to the

string caused by elongation of the string. This term is related

to the initiation of free-response longitudinal vibrations. The

second term in Eq. (1) represents the longitudinal force

directly related to the transverse displacement, i.e., the forced-

response.

Although it is not a computationally efficient technique,

to better understand the results of the experiments described

in Sec. III it is convenient to write the transverse motion of

the string as a linear combination of the normal modes of the

string, which constitute an orthonormal complete set.10,12,16

To understand how the transverse displacement is related to

the force in the longitudinal direction, we assume the normal

modes of the string can be approximated by

yðx; tÞ ¼
X1
n¼1

An sinðxntÞ sinðknxÞ; (2)

where An is the amplitude of the nth transverse mode, kn is

the wave number, xn is the angular frequency, and t repre-

sents time. For a string pinned at both ends kn¼ np/L, where

L is the length of the string. This is only an approximation

for a piano string because there is non-infinite impendence at

the bridge, however, for the purpose of this analysis the

approximation is sufficient.

To better understand the system we limit the number of

transverse modes in the piano string to 2. We refer to the

modal angular frequencies as xn and xm, where n and m are

the transverse mode numbers. In this case the transverse

motion of the piano string can be described by

yðx; tÞ ¼ An sinðxntÞ sinðknxÞ þ Am sinðxmtÞ sinðkmxÞ:
(3)

Substituting Eq. (3) into the second term on the right hand

side of Eq. (1) yields an equation for the force per unit length

on the element dx in the longitudinal direction that is attrib-

utable to the transverse displacement,

FIG. 1. Diagram of a stretched string element and the element at rest.
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Fx;y ¼
�p3 ES� T0ð Þ

L3

�
A2

mm3 cos kmxð Þsin kmxð Þ sin2 xmtð Þ

þAmAnmn

2
cos xn � xm½ �tð Þ þ cos xn þ xm½ �tð Þ
� ��

� m cos knxð Þsin kmxð Þ þ n cos kmxð Þsin knxð Þ½ �g

þA2
nn3 cos knxð Þsin knxð Þ sin2 xntð Þ

�
: (4)

The frequencies of the longitudinal waves induced by

the transverse displacement are seen in Eq. (4) to be 2xm,

2xn, xnþxm, and xn�xm. The first two frequencies are

harmonics of the driving frequencies and therefore are usu-

ally associated with both longitudinal and transverse motion.

It is extremely difficult to experimentally determine the mag-

nitude of the power in these frequencies due to purely longi-

tudinal motion. Furthermore, it is reasonable to assume that

in most cases the transverse motion of the string dominates

the resulting motion of the bridge at these frequencies.

Therefore, we focus on the second two frequencies.

These are the sum and difference of the transverse driv-

ing frequencies and do not necessarily overlap with any

transverse vibrational frequencies. The analysis is simplified

by isolating the two terms of interest in Eq. (4),

Fx;yðþ;�Þ ¼ bm;nAmAnf cosð½xn þ xm�tÞ
þ cosð½xn � xm�tÞg; (5)

where all of the constants except for the mode amplitudes

are absorbed into bm,n. An examination of Eq. (5) indicates

that when the modal amplitudes are linearly related, there is

a quadratic relationship between the amplitude of the

induced longitudinal waves at the sum and difference fre-

quencies and the amplitude of the motion associated with the

transverse displacement of the string. An experimental

investigation of this result is described in Sec. III.

III. EXPERIMENTS AND ANALYSIS

Previous investigations of the forced-response longitudi-

nal waves in piano strings used the depression of the piano key

to generate string motion.7,17 When the string motion is

excited in this manner it is the impulse of the felt hammer that

initiates the motion, which results in a complex motion created

by the many transverse modes that are simultaneously excited.

Not only does impulsive initiation of the transverse motion

produce numerous over-tones, which are subsequently trans-

ferred to the soundboard, but many of these overtones occur

near the frequencies of the forced-response longitudinal

waves. This complexity makes the identification of the fre-

quency components associated with forced-response longitu-

dinal waves difficult. The stiffness of the string can detune the

overtones associated with the transverse motion so that the

two motions occur at different frequencies, but this detuning is

not significant for the lower overtones.

To experimentally investigate the process described by

Eq. (5) it is necessary to ensure that no transverse overtones

occur within the bandwidth of the forced-response waves.

Since this is an unlikely scenario when the string is

impulsively excited, it is prudent to replace the hammer ex-

citation with steady-state harmonic excitation. By ensuring

that the transverse motion of the string is driven at only two

frequencies it is possible to isolate the signature of the

forced-response longitudinal waves, which occur far from

the driving frequencies and their harmonics.

To induce transverse oscillations in a string at only two

frequencies an electromagnetic shaker was securely fastened

to each end of the Bb
0 string of an upright piano as shown in

Fig. 2. The string was a wrapped, single string with a meas-

ured fundamental frequency of 27.4 6 0.1 Hz. The speaking

length of the string was 129.6 6 0.2 cm, with wire wrapping

that covered 125.5 6 0.2 cm. Underneath the outer wrapping

was an inner wrapping that covered 122.6 6 0.2 cm of the

wire. The core wire had a diameter of 1.400 6 0.005 mm and

a linear density of 0.0126 6 0.0001 g/mm. The outer wrap-

ping extended over the length of the inner wrapping as well

as an additional 1.45 6 0.01 cm on either end and had linear

density of 0.116 6 0.001 g/mm. The inner wrapping had a

linear density of 0.0199 6 0.0003 g/mm. One shaker drove

the string at the frequency of the 16th overtone of the funda-

mental frequency of the transverse motion while the other

drove it at the 19th overtone. The driving voltage of one

shaker was held constant while the other was linearly

ramped to the maximum allowable value. A type-1 con-

denser microphone was placed near the soundboard to record

the audio signals, from which a power spectrum was calcu-

lated. A typical power spectrum is shown in Fig. 3. All

experiments were performed in a hemi-anechoic chamber

and sufficient time was allowed between experiments for the

string to come to rest.

As expected, the four frequencies described in Eq. (4),

2xm, 2xn, and xn 6 xm, were observed to have significant

power as shown in Fig. 3. Note that both the sum and differ-

ence frequencies are isolated from the driving frequencies

and their overtones. In what follows we analyze the response

of the string at a frequency equal to the sum of the two trans-

verse driving frequencies, but a similar analysis of the differ-

ence frequency is also possible. Unfortunately, the presence

of small harmonic distortion in the drivers induced trans-

verse string motion at the frequencies 2xm and 2xn. Since

the efficiency of the transfer of string motion to bridge

FIG. 2. (Color online) Schematic of the experimental arrangement. Only a

portion of the piano soundboard is shown.
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motion is different for longitudinal and transverse waves,

and the differences are not completely understood, it is not

possible to determine the magnitude of the power at these

frequencies that is attributable solely to longitudinal motion

of the string.

The power in the sum and difference frequencies of the

16th and 19th overtones were reduced to the level of the

noise when the string was driven at only one transverse fre-

quency, confirming that both transverse waves are required

to generate waves at these frequencies. Additionally, two

laser Doppler vibrometers (LDVs) were directed perpendicu-

lar to the string along orthogonal axes to measure the trans-

verse string motion. The power in the sum and difference

frequencies did not rise above the level of the noise in the

power spectra calculated from either of the LDV measure-

ments. Therefore, the power in these frequency components

can be unambiguously attributed to longitudinal waves in the

string.

To simplify the analysis, the power in the transverse

motion determined from measurements by the LDV at both

driving frequencies was compared to the power recorded by

the microphone at the same frequencies. Results of this com-

parison are shown in Fig. 4, which indicates that a linear

relationship exists between the two measurements.

Therefore, the LDV measurements are redundant and only

audio measurements are required to analyze the system. This

not only simplifies the current experimental arrangement,

but it indicates that measurements of the sound produced by

the piano are sufficient for future investigations of this type.

To demonstrate that Eq. (5) is valid and that the longitu-

dinal vibrations are indeed linearly proportional to the ampli-

tudes of the transverse driving waves, the power in each of

the individual driving frequencies and the power in the sum

frequency is graphed as a function of the power in the driv-

ing frequency of the ramped excitation in Fig. 5. Since the

amplitude of one shaker was held constant and the other was

linearly ramped, the linear relationship between the acoustic

power of the forced-response longitudinal wave and the

power in the transverse motion implies that Eq. (5) accu-

rately describes the experimental situation. Furthermore, it

indicates that there is a quadratic response when both driving

amplitudes are increased simultaneously. When the ampli-

tudes of both shakers were linearly ramped simultaneously,

the quadratic relationship between the power in the longitu-

dinal frequency components and the power in the transverse

displacement, shown in Fig. 6, is clear.

The measurements shown in Figs. 5 and 6 imply that

Eq. (5) accurately describes the system with steady-state, low-

amplitude excitation. However, one may question whether

Eq. (5) is applicable to a fully assembled piano under normal

playing conditions. That is, does this relationship hold for the

case of impulse excitation by the piano hammer?

FIG. 3. (Color online) Power spectrum of the sound produced by a piano

string driven transversely at two frequencies. The driving frequencies are

approximately 468 Hz and 546 Hz.

FIG. 4. (Color online) Power in a transverse frequency component recorded

with the microphone plotted against the power in the same frequency com-

ponent derived from LDV measurements of the string motion. The line rep-

resents a linear regression of the measurements.

FIG. 5. (Color online) The power in the two driving frequencies and the

sum frequency when the amplitude of one driver is held constant and the

other is linearly ramped. The power is plotted as a function of the power in

the frequency of the ramped oscillator. All measurements have been normal-

ized to the power in the frequency of oscillation that was held constant. The

lines represent linear fits.
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To determine if Eq. (5) is valid under normal playing

conditions, the A0 string of a Steinway grand piano was

depressed multiple times with various amounts of force,

causing the corresponding piano hammer to strike the string

and produce transverse vibrations. A microphone recorded

the audio signals after each strike, which were used to calcu-

late a power spectrum for each instance. The frequency asso-

ciated with a longitudinal wave was then identified at a

frequency that did not correspond to a transverse overtone.

The two transverse frequencies xm and xn were identi-

fied as the 10th and 12th overtones of the transverse funda-

mental. The frequency of the longitudinal wave at the sum

of these frequencies did not overlap with the 22nd overtone

of the transverse motion, but occurred between the 21st and

22nd overtones due to the increased frequency of the over-

tones attributable to the effects of the string stiffness. As

shown in Fig. 7 the amplitudes of the two overtones were

linearly related as the hammer force was increased, which

indicates that the amplitudes of the transverse waves

increase equally with increased force on the key. Saturation

effects are noticeable at high forces, however, the amount of

force used to depress the key in these instances was exces-

sive and one would expect that forces of this magnitude are

seldom used during performance.

The results shown in Fig. 7 indicate that the amplitude

of the longitudinal wave should increase quadratically with

the amplitude of the transverse displacement of the string.

Equivalently, the power in the sound produced by the longi-

tudinal wave should increase quadratically with the sum of

the power in the fundamental frequency of the transverse

motion and all of its overtones. More simply, we expect a

linear relationship between the square-root of the power in

the frequency component generated by the longitudinal

wave and the sum of the power in all of the frequency com-

ponents directly attributable to the transverse motion. This

relationship is shown in Fig. 8, where the power attributable

to the transverse motion was determined by summing the

power in the fundamental and first fourteen transverse

overtones.

IV. CONCLUSIONS

The experimental results reported here support the va-

lidity of the model described in Sec. II, which has been used

for several years without the support of empirical evidence.

In a system where the transverse vibrations along a string are

continuously driven, the power in the induced longitudinal

motion is linearly related to each of the transverse driving

amplitudes. Therefore, when the two transverse amplitudes

increase simultaneously, the amplitude of the resulting longi-

tudinal motion is quadratically related to the string displace-

ment. The results shown in Fig. 8 indicate that this

FIG. 6. (Color online) The power in the longitudinal frequency component

plotted against the power attributable to the transverse motion. The line rep-

resents a quadratic fit to the data.

FIG. 7. (Color online) The power in the 12th overtone of the transverse fun-

damental as a function of the power in the 10th overtone for varying forces

used to depress the piano key. The line represents a linear regression of the

measurements excluding the five points with the highest value.

FIG. 8. (Color online) The square-root of the power in the frequency com-

ponent associated with a longitudinal wave plotted as a function of the total

power in the fundamental and first 14 overtones of the transverse motion

when the motion is initiated by depressing the piano key. The total power in

the transverse motion is proportional to the transverse displacement of the

string while the amplitude of the longitudinal motion is proportional to the

power in the sum frequency. The line represents a linear regression of the

measurements excluding the five points with the highest value.
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relationship also describes the motion of the string under

normal playing conditions, however, it is evident that when

the key is depressed with excessive force other processes can

affect this relationship.

We note in closing that N. Giordano has pointed out in a

personal communication that the analysis of Sec. II may

apply equally well to the motion of the bridge as it does to

the string motion. Determining the relative magnitudes of

the coupling through the bridge and the coupling through the

string will entail further experimentation.
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