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The limitations on applying classical thin plate theory
to thin annular plates clamped on the inner boundary

Daniel W. Zietlow, Donald C. Griffin, and Thomas R. Moorea

Department of Physics, Rollins College, Winter Park, FL 32789, USA

(Received 1 April 2012; accepted 24 September 2012; published online 2 October 2012)

The experimentally measured resonance frequencies of a thin annular plate with a
small ratio of inner to outer radii and clamped on the inner boundary are compared to
the predictions of classical thin-plate (CTP) theory and a finite-element (FE) model.
The results indicate that, contrary to the conclusions presented in a number of publi-
cations, CTP theory does not accurately predict the frequencies of a relatively small
number of resonant modes at lower frequencies. It is shown that these inaccuracies
are attributable to shear deformations, which are thought to be negligible in thin plates
and are neglected in CTP theory. Of particular interest is the failure of CTP theory
to accurately predict the resonance frequency of the lowest vibrational mode, which
was shifted approximately 30% by shear motion at the inner boundary. Copyright
2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4757928]

I. INTRODUCTION

The vibrations of circular flat plates have been of intrinsic interest for over a century.1–5 The
interest in such a seemingly simple physical system is due to the widespread application of this
geometry, as well as the inherent ability to study it in detail both theoretically and experimentally.
Although within the past few years it has become common to analyze vibrating systems using
commercially available finite element modeling packages, due to the inherent simplicity of the
system it is still common to use Kirchhoff thin-plate theory, also known as the classical thin-plate
(CTP) theory, to analyze the motion of vibrating plates. CTP theory is especially useful when an
understanding of the physics of plate motion is important and merely predicting an accurate result
using a finite element program is not sufficient.

CTP theory does not include shear deformations and is only applicable for plates having a ratio
of thickness to diameter of less than approximately 0.05. When plates are this thin, shear motion is
believed to be negligible and therefore can be neglected in the analysis. When the thickness exceeds
this limit a theory that takes transverse shear strain into account must be used to analyze the plate.6 It
is also widely accepted that CTP theory is adequate only for predicting the lowest modes of vibration
even for very thin plates.7–9 Specifically, earlier studies indicate that CTP theory “underestimates
deflections and overestimates frequencies” of higher modes.10

It is important to note that CTP theory is commonly used to analyze the behavior of thin plates
with any boundary condition: free, simply supported or clamped.11 In all of these cases, if the plate is
thin, it is commonly believed that the shear motion of the plate need not be considered in the analysis
because it is negligible. In the work reported here we consider a thin annular plate that is free on the
outer edge and clamped on the inner edge. The clamped boundary is assumed to completely restrict
the out-of-plane motion, but because the plate is thin and the in-plane shear motion is assumed to
be negligible, in-plane motion need not be restricted in order to apply CTP theory to the analysis.

In what follows, we present the results of experiments and theoretical analyses of a thin annular
plate with a small ratio of inner to outer radii in which the majority of the first 22 resonance
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FIG. 1. Interferograms showing two of the normal mode deflection shapes of a thin, annular plate. Nodal lines are white;
black and gray lines are contours of equal displacement. (a) (1, 0) mode oscillating at 74 Hz, (b) (1, 1) mode oscillating at
771 Hz.

frequencies, which range as high as 55 times the value of the lowest resonance frequency, are well
predicted by CTP theory, while some of the lowest order modes of vibration are not; these results
appear to be in conflict with several earlier studies. We demonstrate that the differences between
the predictions of CTP theory and the experimental results for some of the lower modes are due to
the effects of transverse shear motion at the inner boundary.Therefore, we conclude that transverse
shear motion can be important even in very thin plates, contrary to what is commonly stated in the
literature.

II. EXPERIMENTS

The plate under consideration is a 2.0 ± 0.1 mm thick annular glass plate with an outer diameter
of 256.6 ± 0.2 mm and an inner diameter of 8.6 ± 0.2 mm. The plate was secured to stainless
steel post by a bolt in such a way that the inner radius was clamped between two washers with a
diameter of 12.5 ± 0.1 mm. The diameter of the washers was smaller than diameter of the post and
the post was secured to a two-inch diameter steel post which was mounted on an optical table that
was actively isolated from ambient vibrations.

The resonance frequencies of the plate and the corresponding normal mode patterns were
determined using time-averaged electronic speckle pattern interferometry. The light source was a
frequency-doubled Nd:YVO4 laser with a wavelength of 532 nm. A complete description of this
interferometric arrangement can be found elsewhere.12 The glass plate was excited acoustically by a
speaker placed approximately 0.5 m away, which was driven by a function generator that produced a
sinusoidal signal with a precision of ±0.05 Hz. Interferograms of two of the normal modes of interest
are shown in Fig. 1. In interferograms such as those shown in Fig. 1, areas of white indicate nodal
lines while alternating lines of black and gray represent contours of equal displacement. Note that
the interferograms indicate that the plate had a high degree of symmetry, and indeed the degeneracy
between orthogonal modes was not broken by more than a 0.1% in most cases.

The modal shape of the plate was recorded using electronic speckle pattern interferometry
when it was excited at all of the resonance frequencies discussed below. In addition to allowing the
unambiguous identification of the modal shapes, the lack of any motion of the internal boundary was
confirmed within the limits of detection of the interferometer (∼100 nm). The lack of any indication
of out-of-plane motion of the support demonstrated that the out-of-plane vibrations were effectively
damped and that the plate could be considered an annular plate clamped on the inner boundary,
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TABLE I. Measured frequencies at which the normal modes of a glass flat plate occur beside the frequencies predicted by
CTP theory.

Frequencies of Normal Modes
Experimental Frequency Theoretical Frequency Difference

Mode (±1 Hz) (Hz) (%)

(1, 0) 74 102 32
(0, 0) 126 131 4
(2, 0) 181 190 5
(3, 0) 416 429 3
(4, 0) 727 750 3
(0, 1) − 772 −
(1, 1) 771 858 11
(5, 0) 1112 1144 3
(2, 1) 1146 1203 5
(6, 0) 1568 1611 3
(3, 1) 1717 1774 3
(7, 0) 2052 2147 5
(0, 2) 2096 2276 8
(1, 2) 2160 2412 11
(4, 1) 2382 2458 3
(8, 0) 2692 2751 2
(2, 2) 2743 2907 6
(5, 1) 3131 3233 3
(9, 0) 3358 3420 2
(3, 2) 3607 3741 4
(6, 1) 3964 4089 3
(10, 0) 4091 4154 2

with the inner boundary being defined by the diameter of the washers. We note, however, that the
arrangement did not completely restrict shear motion of the plate at the inner boundary.

Although interferometry is the most effective method of identifying the resonant frequencies
and their associated modal patterns, two of the modes were heavily damped and difficult to excite
acoustically. To identify modes that were heavily damped, the sound produced by striking the plate
was recorded and a power spectrum was produced. The peaks in the power spectrum that could not
be identified by interferometry were compared to a finite-element (FE) model of the plate produced
in the commercially available program Femap, a FE and postprocessing program developed by
Siemens PLM Software. A list of the first 22 modes and their frequencies is shown in the second
column of Table I. In this table the mode structure is annotated as (m, n), where m is the number
of nodal diameters and n is the number of radial nodes. Of the two heavily damped modes, the
(7, 0) mode was identified from the power spectrum but the (0,1) mode was so heavily damped that
it could not be identified acoustically or interferometrically.

III. THEORY

Having experimentally determined a large number of the normal mode frequencies and modal
shapes of the annular plate, we utilized CTP theory to predict the resonance frequencies of the
plate. One would expect that since the ratio of the plate thickness to the diameter of the plate is
approximately and order of magnitude smaller than what is normally considered the limit of being
thin, CTP theory should accurately predict the resonant frequencies of the lower modes of vibration.
Thus the fact that shear motion may occur at the inner boundary should be insignificant to the
analysis.

The fundamental assumptions of CTP theory are that the magnitude of the vibrations of the
plate are small and the plate is thin enough that the flexural stress perpendicular to the middle plane
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TABLE II. Parameters used to model the annular thin plate. The parameters a and b are the inner and outer radii, respectively.
The other parameters are defined in the text.

Parameters used in the model

a 6.25 mm
b 128.3 mm
h 2 mm
σ 5.32 kg/m2

E 9.0 × 1010 N/m2

ν 0.22
R 1.0 × 10−5 kg/m2s

is negligible. These assumptions effectively reduce the analysis of the three-dimensional plate to a
two-dimensional problem.13 The material of the plate is also assumed to be elastic, homogeneous and
isotropic, as well as initially flat. These conditions are all met in the experiments under consideration
here.

In cylindrical coordinates, CTP theory describes the transverse motion of a thin plate by the
differential equation

−D∇4w(r, φ, t) + p(r0, φ0, t) − R
∂w(r, φ, t)

∂t
= σ

∂2w(r, φ, t)

∂t2
, (1)

where w is the displacement of the plate, R is a damping coefficient, σ is the mass per unit area, and
p(r0, φ0, t) is the applied force per unit area. The coefficient D is known as the flexural rigidity and
is defined as

D = Eh3

12
(
1 − ν2

) , (2)

where E is the elastic modulus of the plate, h is the thickness of the plate, and ν is Poisson’s ratio.
To compare the data presented in Section II with predictions from CTP theory, Eq. (1) was

numerically integrated using a finite difference computer program that was described in detail
previously by Moore, et al., which was validated by comparing the predicted frequencies with those
determined analytically; the average variation was approximately 2%.5 The plate was assumed to
be clamped on the inner boundary, which was defined by the diameter of the washers securing the
plate, and the outer edge was assumed to be free. The parameters used in the model are shown in
Table II. Note that the damping coefficient R was very small and investigations showed that damping
at this level had no effect on the predicted frequencies.

In the program, the plate was divided into 200 radial and 120 angular points (24,000 total points),
with the displacement of each of these points being given by the finite difference solution to Eq. (1).
Two different driving scenarios were applied to ensure that the resonant frequencies were properly
identified. First, the plate was modeled as being struck with a pulse of short duration (5.0× 10−4 s)
and, using a time step of 6.0× 10−9 s, the program was run to simulate a total time of 1.0 s. The
resonant frequencies were then determined by performing a Fourier transform on the displacement
at a single point as a function of time. Then, to identify each mode of vibration, a sinusoidal force
at each resonant frequency was applied to the plate and the program was run for a sufficiently long
time to establish a clear modal pattern. Plots of the displacements as a function of time and position
allowed for the unambiguous identification of each mode.

The experimentally determined resonance frequencies are compared to those predicted by CTP
theory in Table I and shown graphically in Fig. 2. Note that the theoretical predictions are in good
agreement with the experimental data for all modes except the (1, n) modes, with a difference of
approximately 32% in the case of the (1, 0) mode.

The validity of the predictions of the finite difference model was further investigated by modeling
the plate using the commercially available FE modeling program Femap. This FE model does not
include any of the assumptions concerning stress, strain, or bending and twisting moments that are
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FIG. 2. Plot of the difference between the measured resonance frequencies and those predicted by CTP theory. The data are
shown in Table I.

TABLE III. Predicted resonance frequencies from both CTP theory and a FE model assuming the inner boundary is clamped
in all directions.

Frequencies of Normal Modes
CTP Theory FE Model Difference

Mode (Hz) (Hz) (%)

(1, 0) 102 94 9
(0, 0) 131 129 2
(2, 0) 190 188 1
(3, 0) 429 430 1
(4, 0) 750 752 1
(0, 1) 772 746 3
(1, 1) 858 825 4
(5, 0) 1144 1150 1
(2, 1) 1203 1189 1
(6, 0) 1611 1623 1
(3, 1) 1774 1773 1
(7, 0) 2147 2171 1
(0, 2) 2276 2195 4
(1, 2) 2412 2323 4
(4, 1) 2458 2464 1
(8, 0) 2751 2792 1
(2, 2) 2907 2858 2
(5, 1) 3233 3246 1
(9, 0) 3402 3486 2
(3, 2) 3741 3739 1
(6, 1) 4089 4116 1
(10, 0) 4154 4254 2

included in CTP theory. Instead, it solves the full three-dimensional elastic problem. The FE model
divided the plate into 11,892 three dimensional elements with two volume elements spanning the
thickness of the plate.

Table III shows a comparison between the resonance frequencies predicted by CTP theory and
those predicted by the FE model, with the assumption that the inner boundary is clamped in all



042103-6 Zietlow, Griffin, and Moore AIP Advances 2, 042103 (2012)

dimensions. The average difference between the two sets of frequencies is only 2%, which is within
the uncertainty in the finite difference method used to make the CTP theory predictions.5 We note
that the largest differences occur for the (0, n) and (1, n) modes, but with the exception of the
(1, 0) mode, these are all less than or equal to 4%. The excellent agreement seen in Table III between
the predicted resonance frequencies from CTP theory and the FE model with this inner boundary
condition is an important result. The similarity between the predicted resonant frequencies for the
two models, one two-dimensional and one three-dimensional, seems to further support the validity of
CTP theory for describing the motion of this plate to quite high frequencies. That is, when the inner
boundary is fixed in all dimensions, assuming that the plate is essentially two-dimensional appears
to be a valid approximation since solving a fully three-dimensional problem yields results in overall
excellent agreement. Thus, we are left with the question of why there are significant differences
between the experimentally determined and theoretically predicted resonance frequencies of the
(1, n) modes, with a specific interest in the lowest mode of vibration (1,0).

IV. INVESTIGATING BOUNDARY CONDITIONS

The observed difference between the experimentally determined resonance frequency of the
lowest normal mode and that predicted using CTP theory indicates the possibility that the system
being modeled does not reflect the physical reality of the vibrating flat plate. Therefore, we investi-
gated the effect that varying the boundary conditions has on the resonance frequencies predicted by
the FE model.

In the analysis presented above it was assumed that the inner diameter of the annular plate
is fixed, as one might expect given the experimental arrangement described in Sec. II. Although
the screw securing the inner boundary did not make firm contact with the interior of the plate, the
plate was securely prevented from any out-of-plane motion by the presence of the washers, which
were securely in contact on both sides of the plate and the support structure. Since it is commonly
assumed that shear strains can be ignored in determining the resonant frequencies for the low modes
of vibrations in plates with a thickness comparable to that used in this experiment, one may conclude
that the effects of in-plane motion of the inner boundary are negligible for these modes, which is the
assumption used to derive Eq. (1). However, especially given the large discrepancies between the
experimentally measured resonance frequency for the (1,0) mode and the predictions of both CTP
theory and the FE model for this mode, it is reasonable to suspect that the in-plane motion of the
inner boundary may be important.

To investigate this possibility, the FE model was altered so that the restriction on the in-plane
motion at the inner boundary was removed, while keeping the out-of-plane motion constrained. Thus
the model was adjusted so that it accurately reflected the actual boundary conditions of the plate.
Upon relaxing this condition, there was a significant change in the predicted resonance frequencies
of the (0, n) and (1, n) modes, with the most significant being the frequency of the (1, 0) mode.
Table IV includes a list of the experimentally determined resonance frequencies of the annular
plate compared to the predicted frequencies from the FE model with the inner boundary condition
restricting the in-plane motion removed. These results clearly demonstrate that allowing for in-plane
motion of the clamped region results in predicted resonance frequencies consistent with those found
experimentally, and in the process verifies the validity of the FE model. In contrast to the case where
the in-plane motion was restricted, the predicted resonance frequencies are almost all within 4% of
those determined experimentally and the predicted frequencies of the (1, n) modes are all within 2%
of the measured values.

V. DISCUSSION

The results shown in Table I and Fig. 2 indicate that CTP theory adequately predicts many of
the first 22 resonance frequencies of a thin annular plate clamped at the center; however, noticeable
discrepancies do exist between experimental results and the predictions of CTP theory for the (1, n)
modes, especially at the lowest resonant frequency. These noticeable differences also exist between
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TABLE IV. Measured frequencies at which the normal modes of an annular flat plate occur beside the theoretical predictions
of the FE model when in-plane shear motion at the inner boundary is allowed.

Frequencies of Normal Modes
Experimental Frequency Theoretical Frequency Difference

Mode (±1 Hz) (Hz) (%)

(1, 0) 74 72 2
(0, 0) 126 120 5
(2, 0) 181 187 3
(3, 0) 416 430 3
(4, 0) 727 752 3
(0, 1) − 678 −
(1, 1) 771 762 1
(5, 0) 1112 1150 3
(2, 1) 1146 1178 3
(6, 0) 1568 1623 3
(3, 1) 1717 1773 3
(7, 0) 2052 2171 6
(0, 2) 2096 2015 4
(1, 2) 2160 2173 1
(4, 1) 2382 2464 3
(8, 0) 2692 2791 4
(2, 2) 2743 2821 3
(5, 1) 3131 3246 4
(9, 0) 3358 3486 4
(3, 2) 3607 3737 4
(6, 1) 3964 4116 4
(10, 0) 4091 4254 4

the experimentally determined resonance frequencies and those predicted using the commercially
available FE software, unless in-plane motion at the inner boundary is allowed.

In comparing Tables I and III with Table IV, it is clear that the (0, n) and (1, n) modes are
the most affected by relaxing the in-plane boundary condition, whereas the frequencies of the other
modes are not significantly changed. This is an interesting result, since it implies that these modes
are the most affected by a shear deformation of the clamped region. In fact, the FE model predicts a
noticeable decrease in the in-plane motion with an increase in the number of nodal diameters of the
normal mode patterns. It appears that for mode patterns with a higher number of nodal diameters,
opposing in-plane stresses that are in close proximity reduce the in-plane motion of the plate. This
is not the case for modes with no nodal diameter or for modes with only one nodal diameter. In
these cases shear deformation of the interior boundary does not change direction ((0, n) modes), or
changes direction at only two points ((1, n) modes). Therefore, the effects of shear deformation are
more pronounced for these modes.

VI. CONCLUSIONS

The work reported here shows that although CTP theory is widely accepted as sufficient for
analyzing the lowest normal modes of thin annular plates, there are important cases where the
approximations involved in developing the theory are not valid. Despite the fact that the annular
plate used in the experiments described here meets the conditions under which CTP theory is
considered an acceptable means for modeling the motion of low frequency modes of vibration, the
lowest resonance frequency is not accurately predicted. Furthermore, the accuracy of the prediction
is significantly improved by relaxing the restriction on in-plane motion at the inner boundary,
indicating that, contrary to what is widely believed, the effects of shear strain can be important in
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thin plates at low frequencies.That is, CTP theory is not valid despite the fact that the dimensions of
the plate fall well within the limitations under which it is normally applied.

From this work one can conclude that, although it is a common assumption found in the
literature as well as recent textbooks,14 it is not appropriate to use CTP theory when modeling thin
annular plates unless there is no possibility of shear deformation at the internal boundary. While this
condition is often assumed, and it is relatively easy to ensure that there is no out-of-plane motion at
the inner boundary of an annular plate, in an actual physical system it is very difficult to ensure that
there is no in-plane motion.Yet shear deformation, which is normally considered negligible in thin
plates, clearly affects the resonance frequencies of some of the lowest modes.

Since the effect of shear deformation on the resonance frequencies of thin annular plates is
not negligible, one may suspect that there are other thin-plate geometries where in-plane motion is
important. Indeed, it is reasonable to assume that such effects will be observable in any instance
where the modal pattern produces large areas of the internal boundary without opposing in-plane
forces.

From Table I, it is clear that resonant frequencies predicted by CTP theory agree well with
those measured experimentally for both the (m, 0) and (m, 1) modes with m > 1 up to over 4K Hz.
Thus, there is no indication that CTP theory fails to accurately predict the resonance frequencies
in very thin plates for many of the modes of vibration, even when the in-plane motion at the inner
boundary cannot be restricted. Finally, as indicated by the comparison between CTP theory and the
three-dimensional model in Table III, if such motion could be restricted experimentally then CTP
theory should accurately predict the resonance frequencies of even the lowest modes of vibration.
However, contrary to what is commonly stated in the literature, when in-plane motion is not restricted
one cannot assume that CTP theory is applicable simply because the plate is thin.

We note in closing that it is not clear that this restriction on the use of CTP theory applies to
plates where the ratio of inner to outer radii is not small. Further work is required to verify that that
this restriction holds under these conditions.
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