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Tuning the Nigerian slit gong

Ashley E. Cannaday, Brandon C. August, and Thomas R. Moorea)

Department of Physics, Rollins College, Winter Park, Florida 32789

(Received 5 August 2011; revised 7 December 2011; accepted 11 December 2011)

An experimental and theoretical investigation of the Nigerian slit gong is reported. It is shown that

in tuning the gong the artisan ensures that the frequencies of the two lowest mechanical resonances

are nearly coincident with the frequencies of two of the acoustic resonances of the internal cavity.

Four possible tuning parameters are identified and the effects of changing these parameters are

discussed. VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3675940]

PACS number(s): 43.75.Kk, 43.75.Hi [JW] Pages: 1566–1573

I. INTRODUCTION

The slit gong is known to have existed for over a millen-

nium in various regions across the world. It has numerous

aliases, including the ekwe drum, slit log drum, lokole,

mongo, and boungu, and is common to many cultures,

including those in Africa, the Philippines, Mexico, and the

South Pacific islands. The gongs range in size from less than

25 cm to several meters long.

A photograph of a typical Nigerian slit gong is shown in

Fig. 1. Regardless of where in the world the gongs are found

they have several common characteristics. The most notable

characteristic is that it is formed from a single log and there

is a slit carved into it, which separates two regions that pro-

duce different pitches when struck. However, slit gongs can

have multiple slits, a wide variation in slit dimensions, and

the details of the interior cavity may vary considerably. The

Nigerian slit gong, which was initially used by indigenous

Africans as a means of communication, has two tabs that

produce two different pitches when struck and is representa-

tive of this common idiophone. A small gong approximately

0.5 m long and 20 cm in diameter can transmit messages up

to 3 miles, and larger gongs that are approximately 1.5 m

long and 1 m in diameter can send signals up to 7 miles.

To convey messages using a slit gong the drummer

takes advantage of the fact that most African languages are

tonal, using two pitches in the pronunciation of words. Each

syllable of a word must be assigned one of these pitches, and

a change in the pitch can dramatically alter the meaning of a

word. Slit gongs use this reliance on enunciation to send

messages; a syllable with emphasis is conveyed with the

higher pitch, whereas a syllable without emphasis is con-

veyed with the lower pitch. However, many words can have

the same combination of high and low pitches; therefore,

African drummers have used much longer unique phrases

for many objects, actions, people, or places.1 Today, how-

ever, slit gongs are used primarily as musical instruments.

The slit gong is made by carving two rectangular holes

into the side of a log and then hollowing out a cavity

between them. A section of the log is left above the cavity

between the two holes, and a slit is carved down the middle

of it. This arrangement creates the two tabs between the

holes. By ensuring that the thickness of the interior wall of

the log is different near the two tabs they are made to have

different resonance frequencies. Typically the gong is con-

structed from logs of Pterocarpus soyauxii, commonly

referred to as African padauk, camwood, or coral-wood.

Although detailed studies have been conducted concern-

ing the acoustics of numerous idiophones, to our knowledge

the slit gong has not been investigated. This may be due to

the fact that it is a rare and expensive instrument that must

be imported from Africa. It appears that few people outside

of Africa know how to make the instrument, and from infor-

mal communication with artisans in the United States it

appears that those who do simply perform the steps that

were taught through a short apprenticeship.

We report here on an investigation into the acoustics of

this unique instrument. Our investigation included determin-

ing how the Nigerian slit gong is tuned and if this method of

tuning is the most efficient. To determine the acoustic prop-

erties of the gong, we investigated the gong as both a me-

chanical resonator (the tabs) and an acoustic resonator (the

air cavity). We then determined the relationship between the

mechanical resonances of the tabs and the acoustic resonan-

ces of the air cavity. Analytical or numerical models were

then developed for each resonator to investigate how chang-

ing the physical parameters of the gong changed the reso-

nance frequencies.

In the work reported here three slit gongs were investi-

gated. The three instruments were purchased over a period

of five years from different vendors. Although there were

differences in the details of each of the gongs, some of which

will be noted in the following, in general the three gongs had

similar measurements and characteristics. One gong was

chosen as representative and the measurements of this gong

were used for the modeling efforts described below. The

physical measurements of this gong are shown in Table I.

The mechanical resonator of the tabs was modeled using

commercially available finite element modeling software,

and the results were compared to the power spectrum of the

tab motion when struck to ensure their validity. The acoustic

resonator of the gong was modeled both as a Helmholtz reso-

nator and as a pipe that is closed at both ends but perturbed

by the two open holes. The analytical models of these reso-

nators were validated by comparing the predictions to the

a)Author to whom correspondence should be addressed. Electronic mail:

tmoore@rollins.edu
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power spectrum of sound within the interior cavity. We then

used these models to determine how changing the tuning pa-

rameters affected the resonance frequencies of the tabs and

the interior cavity.

II. ACOUSTIC AND MECHANICAL MEASUREMENTS

The power spectra of the motion of the tabs were

obtained using a laser Doppler vibrometer (LDV), which

recorded the velocity of the tab after it was struck with a rub-

ber mallet. The air cavity power spectra were obtained by

placing a speaker, driven with a linear sweep between 50 Hz

and 2 kHz, inside the gongs and recording the amplitude of

the sound using a microphone placed outside the gong. The

power spectra for both tabs, as well as the air cavity power

spectra for the three gongs, are shown in Fig. 2.

The coincidence between the frequencies of the tab

resonances and those of the air cavity is of significant inter-

est. For all three of the gongs, the frequencies of the lowest

tab resonances are very close to the frequency of the lowest

cavity resonance. Similarly, the second tab resonances have

frequencies that are close to, or coincident with, the fre-

quency of one of the higher cavity resonances. It can also be

seen that for all of the gongs a local minimum in the air cav-

ity spectrum occurs at the fundamental resonance frequen-

cies of the tabs. Figure 2(d) is a detail of Fig. 2(a), where the

interaction between the two resonances is more clearly seen

in the acoustic power spectrum. These data suggest that at

the tab resonance frequencies an exchange of power occurs

between the tabs and the air cavity near the frequency of the

lowest resonance, indicating strong coupling between the

two. Interestingly, a cyclic exchange of energy between the

tabs and air cavity of slit gongs has previously been posited

by Sunohara et al.2

The theory that there is a cyclic exchange of energy

between the tabs and the cavity is based on an investigation

of the mokugyo, a Japanese round, wooden percussion

instrument with a hollow interior and a narrow slit that

appears qualitatively similar to the slit gong. In Ref. 2 the

authors demonstrated that the mechanical resonator and the

Helmholtz resonator of the mokugyo are strongly coupled,

and that the energy from the vibration of the tabs is cycli-

cally exchanged between the air cavity and the tabs. This led

them to suggest that a similar effect occurs in slit gongs.

To determine the effects of this coupling on the slit

gong, the sound of the gong with the power spectrum shown

in Fig. 2(c) was recorded as one tab was struck with a mallet.

The recording was made using a microphone placed �30 cm

from the gong. A graph of the sound pressure vs time is

shown in Fig. 3(a) along with the power spectrum having a

resolution of 12.1 Hz. It can be seen that there is a periodic

modulation of the sound in addition to the expected expo-

nential decay, similar to what is observed in the sound from

a mokugyo. The period of the modulation is approximately

19.5 ms, resulting in a beat frequency of �51 Hz. However,

the power spectrum indicates that the modulation is attribut-

able to the interference of two different frequency compo-

nents that correspond to the resonance frequency of the tab

and the resonance frequency of the air cavity. The lower res-

onance frequency of the tab is 501.5 Hz, and the lowest reso-

nance frequency of the air cavity occurs at �450 Hz, both of

which are seen in the power spectrum. The difference in the

two frequencies is equal to the observed beat frequency.

These data indicate that the modulation in the envelope

of the sound is due to interference between the sound pro-

duced by the tab at its resonance frequency and the sound

that is amplified by the resonance of the air cavity. This ex-

planation is further supported by LDV measurements of the

displacement of the tab after it is struck. The results of this

measurement are shown in Fig. 3(b). In addition to the dis-

placement, Fig. 3(b) also contains a plot of the exponentially

decaying envelope function obtained through a least-squares

fit of the peak values and a graph of the power spectrum. An

examination of the displacement of the tab vs time reveals

that there is no significant harmonic modulation of the

motion beyond what is expected at the resonance frequency

of the tab. Further, the power spectrum indicates that there is

no significant power in the frequency range associated with

the acoustical resonance at 450 Hz. This implies that there is

not a significant cyclic energy exchange from the tabs to the

air cavity, but rather that the tab motion is largely independ-

ent of the air cavity. That is, the tab resonance is driving the

TABLE I. The measured parameters of the slit gong used for the modeling.

Parameter Symbol Value (mm)

Gong length L 476

Gong diameter D 156

Cavity length lc 312

Cavity radius R 48

Hole #1 length lh1 100

Hole #1 width wh1 50

Tab #1 thickness t1 44

Hole #2 length lh2 96

Hole #2 width wh2 52

Tab #2 thickness t2 42

Tab width wt 116

FIG. 1. (Color online) Photographs of (a) the Nigerian slit gong and (b)

the cross section of the middle of the drum. The labels indicate the param-

eters used in modeling: Hole length lh, hole width wh, tab width wt, tab

thickness t, cavity radius R, cavity length lc, length of the log L, and diam-

eter of the log D.
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acoustic system with minimal feedback, and although some

energy must be transferred back to the vibrating tabs, the

effect of this is negligible.

In addition to the overlapping lower tab resonance and

lower resonance of the air cavity, the second tab resonance

frequencies for each tab occur near the frequency of the third

resonance of the air cavity. This suggests that the gongs are

tuned so that the frequency of the lowest tab resonance

occurs near the lowest resonance of the air cavity, and that

the frequency of the second tab resonance occurs near the

frequency of a higher resonance of the air cavity. The gong

will therefore ideally have multiple coincident resonances,

which is likely very difficult to achieve.

In the work reported here we sought to determine the

most efficient methods of tuning the gong given the possible

parameters the carver can alter. To tune the mechanical reso-

nance the tab length, thickness, and width can be altered. To

tune the air cavity resonances only the hole dimensions and

air cavity radius can be altered once the length of the cavity

has been chosen. However, changing the length and width of

the holes subsequently alters the width and length of the

tabs, and changing the radius of the cavity alters the thick-

ness of the walls. Therefore, the artisan has only four inde-

pendent parameters that can be used to adjust the sound of

the slit gong: the thickness of the tabs (t), the radius of the

internal cavity (R), and the length and width of the holes (lh
and wh, respectively). In what follows we will show how

changes in these physical parameters affect the mechanical

and acoustic resonance frequencies.

III. MODELING THE MECHANICAL RESONANCES

Determining an analytical function that accurately pre-

dicts the mechanical resonances of the struck gong is a diffi-

cult problem due to the complex manner in which the gongs

FIG. 2. (Color online) (a)-(c) Power

spectra of the two tabs and air cavity

for each of the three gongs that were

investigated. (d) Detail of (a).

FIG. 3. (a) Plot of the sound pressure vs time when one tab of a gong is

struck. (b) Plot of the displacement of the same tab of the gong vs time

obtained using laser Doppler vibrometry. The dashed line is an exponential

fit to the envelope. The power spectrum is shown as an inset in each case.
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are carved. Although the tabs appear to be merely cantilever

beams with one free end, the thickness of the tab varies with

position. This situation has been modeled previously for the

case of a beam with one end fixed,3 but in the case of the slit

gong the tabs are integrated into the wall of the drum and

such a simple model does not produce meaningful results.

Therefore, a finite element model was used to determine

how the geometry of a tab affects its resonance frequency.

A finite element model of the slit gong that produced the

power spectrum shown in Fig. 2(a) was created using com-

mercially available finite element software. The modeling pa-

rameters are given in Table I, and the inner cylinder of the

gong was offset slightly from the outer cylinder within the

model so that the walls had different thicknesses that were

similar to the measurements of the gong. Because the interior

of the gong is hand carved, the walls are very rough and not

of uniform thickness; however, the wall thickness used in the

finite element model matches the mean wall thickness of the

actual gong with an error of less than 3%. The density and

Young’s modulus can vary significantly among woods from

the same species, therefore, these were used as fitting parame-

ters for the model. A material density of 975 kg/m3, Young’s

modulus of 8 GPa, and Poisson’s ratio of 0.3 were chosen,

which are consistent with the material properties of African

padauk.4,5 The material was assumed to be isotropic, and

although wood is in fact not an isotropic material we find that

the results of an isotropic model compare well to the experi-

mental results. Therefore, the slight difference between the

measured and predicted results did not justify the added com-

plexity of including anisotropy in the model.

The finite element model analysis program FEMAP with

NX Nastran was used to calculate the resonance frequen-

cies of the model. The finite element model of the gong pre-

dicts the resonances of the two tabs to be 428 and 383 Hz.

These values correspond well with the resonance frequen-

cies of the tabs of 439 and 384 Hz, indicating that the simu-

lation closely models the actual gong dynamics. The

displacement of the gong predicted by the finite element

model also closely matches interferograms of the motion of

the first mode. The interferograms and predictions of the

model are shown in Fig. 4.

Having validated the model with experimental data, the

tuning parameters were changed within the model to deter-

mine what affect they have on the resonance frequencies of

the tabs. These results will be addressed in Sec. V.

As discussed previously, the slit gong consists of a me-

chanical oscillator and an air cavity that acts as a resonator.

The tab of the slit gong oscillates at one or more of the natu-

ral resonance frequencies and is not significantly influenced

by the air cavity. Therefore, the air cavity inside the gong

can be modeled independently from the tabs. This will be

addressed in the next section.

IV. MODELING THE ACOUSTIC RESONANCES

As noted previously, the resonance of the air cavity

inside the gong significantly affects the sound produced. The

air cavity resonances are due to a Helmholtz resonator with

two necks, as well as the fact that the cylindrical cavity of the

gong is a pipe closed at both ends perturbed by the two holes

of the gong. First, the network analog method is used to

describe a Helmholtz resonator with two necks, and the

predictions of the theory are compared to experimental results.

Then this method is used to describe the closed-pipe resonance

perturbed by the two open holes of the gong. After describing

the models the results of changing the tuning parameters are

presented.

A. Helmholtz resonance

The frequencies of complex Helmholtz resonators can

be found using the network analog method as described by

Fletcher and Rossing.6 The analog network describing the

Helmholtz resonator with two necks is shown in Fig. 5.

The acoustic impedance of the holes of the gong, which

are analogous to open pipes, is given by

Zp1;2 ¼ jx
qat1;2

Sh1;2

� �
; (1)

where x is the angular frequency, j¼
ffiffiffiffiffiffiffi
�1
p

, qa is the density

of air, t is the thickness of the tab (which defines the length

of the neck of the Helmholtz resonator), Sh is the surface

area of the hole (lh�wh), and the subscripts indicate the two

FIG. 4. (Color online) (a) Electronic speckle pattern interferograms of the

slit gong being driven acoustically at the frequency of the first tab resonance

for each tab. Harmonic motion is indicated by fringes of equal displacement.

The resonant frequencies are 384 and 439 Hz. (b) FEA model of the dis-

placement of the gong at the frequency of the first tab resonance. The pre-

dicted resonance frequencies are 383 and 428 Hz.
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individual holes of the gong. The impedance of the cavity of

air inside the gong is equal to

Zc ¼
�jqac2

Vx
; (2)

where c is the speed of sound in air, and V is the volume of

the cavity. Finally, the impedance associated with radiation

losses at the opening of the holes of the gong can be calcu-

lated from the equation for the open end of a flanged pipe of

radius a and area S. The impedance is approximately given by

Zr1;2 � 0:16
qax

2

c
þ 1:7jx

qaa1;2

S1;2
; (3)

where a is determined by assuming that the cross-sectional

area of the rectangular hole Sh is equal to the cross-sectional

area of the flanged pipe. That is,

a1;2 ¼
ffiffiffiffiffiffiffiffiffi
Sh1;2

p

r
: (4)

The effective impedance of the circuit is given by

Zeff ¼ Zc þ
Zp1 þ Zr1

� �
Zp2 þ Zr2

� �
Zp1 þ Zr1 þ Zp2 þ Zr2

; (5)

and at the Helmholtz resonance the impedance is transition-

ing from a phase of p/2 to �p/2. Therefore, the Helmholtz

resonance occurs when the imaginary portion of Eq. (5) is

equal to zero. The calculated Helmholtz resonance frequency

for the gong is 349 Hz, which closely matches the frequency

of the first peak in the air cavity power spectrum, which

occurs at 335 Hz.

The dimensions of the two holes and the two tabs are

approximately the same in all of the gongs that were stud-

ied. Therefore, for any particular gong Zp1 and Zp2 are

approximately equal, as are Zr1 and Zr2. Using this approxi-

mation we can write the equation for the Helmholtz reso-

nance frequency as

f ¼ cffiffiffi
2
p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sh

tþ 1

2

ffiffiffiffiffiffiffi
Shp

p� �
V

vuuut : (6)

B. Perturbed closed-pipe resonance

The air cavity of the Nigerian slit gong can also be mod-

eled as a pipe closed at both ends perturbed by two open holes

in the side, but it is necessary to model this system separately

from the Helmholtz resonator because the mode shapes differ

significantly. Although the method for calculating the funda-

mental resonance frequency of a pipe closed at both ends is

well known, in this case the perturbations cause the resonance

frequency to be increased due to the fact that the holes effec-

tively shorten the length of the pipe. Again, we use the net-

work analog to determine the resonance frequency.

The network diagram for the closed pipe perturbed by

two open holes is shown in Fig. 6(a). The compliance at

each end of the cavity is given by7

C ¼ 4lcSc

p2qac2
; (7)

where Sc is the cross sectional area of the cavity and lc is the

length of the cavity. Lc1, Lc2, and Lc3 are the inertances in

the cavity, which are dependent on the length of the first

hole, length between the holes, and length of the second

hole, respectively, and are given by6

Lc1 ¼
qalh1

Sc
; (8)

Lc2 ¼
qa lc � lh1 � lh2ð Þ

Sc
; (9)

and

Lc3 ¼
qalh2

Sc
: (10)

Here lh1 and lh2 are the lengths of the first and second

holes of the gong, respectively. Lh1 and Lh2 are the inertan-

ces of the holes, which are dependent on the thickness of

the tabs and are given by

FIG. 5. The analog circuit of a Helmholtz resonator with two necks.

FIG. 6. (a) The analog circuit of a cylindrical pipe closed at both ends with

two holes near the ends and (b) the circuit used to determine the resonance

frequency of the second harmonic.
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Lh1 ¼
qat1

Sh1

(11)

and

Lh2 ¼
qat2

Sh2

: (12)

The frequency of the resonance is calculated by find-

ing the minimum of the effective impedance. Because the

geometries of the holes and tabs of the gong are very simi-

lar, we assume that Lh1¼Lh2 and Lc1¼Lc3. The equation

for the perturbed closed-pipe resonance frequency is then

given by

f ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lh1Lc2 þ 4Lc1Lh1 þ 2Lc1Lc2 þ 2L2

h1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4L4

h1 þ 4Lc2L3
h1 þ L2

c2L2
h1

q
2CLc1ðLh1Lc2 þ 2Lc1Lh1 þ Lc1Lc2 þ 2L2

h1

vuut
: (13)

Using this equation, the calculated perturbed closed-

pipe resonance for the gong is 692 Hz, which closely

matches the frequency of the second peak in the air cavity

power spectrum at 645 Hz. The difference between the pre-

dicted and measured frequencies is less than 10% and is

most likely due to the fact that the interior cavity is not per-

fectly cylindrical.

Although Eq. (13) predicts the frequency of the pipe res-

onance well, when tuning the slit gong the goal of the carver

is to closely align the higher order tab resonances with the

second perturbed pipe resonance, rather than the fundamental

pipe resonance. The second unperturbed closed-pipe reso-

nance occurs when the wavelength of the pressure wave is

equal to the length of the pipe; when this occurs there is an

impedance minimum at the center of the cavity. Although the

holes in the gong perturb the pipe resonance, due to the sym-

metry of the holes we assume that the impedance minimum

still occurs at the center of the cavity. The network analog

used to determine the impedance at the center of the gong is

shown in Fig. 6(b). For this calculation, the length of the cav-

ity is taken to be half of the original length and the second

perturbed pipe resonance frequency is given by

f ¼ c

2
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tSc þ lc � lh1 � lh2ð ÞSh

lc t lc � lh1 � lh2ð ÞSc þ lc � lh1 � lh2ð Þlh1Sh þ 2tlh1Scð Þ

s
: (14)

The second resonance of the perturbed closed-pipe reso-

nance is predicted to be 1148 Hz, which deviates from the

measured frequency of 1219 Hz by less than 10%.

V. TUNING A SLIT GONG

To ensure that the resonance frequencies of the acoustic

and mechanical resonators are nearly coincident, the carver

can alter several parameters of the slit gong. However, most

of these parameters are coupled, meaning that a change in

any one parameter will change the Helmholtz resonance fre-

quency, the closed-pipe resonance frequency, and the tab

resonance frequency simultaneously. To determine how the

carver can tune these important resonances one must under-

stand how a change in one tuning parameter affects each of

the important resonances. As noted previously, the independ-

ent parameters that can be changed are the tab thickness, ra-

dius of the cavity, hole width, and hole length. In what

follows, the finite element model was used to determine the

effects that changing these parameters have on the mechani-

cal resonances of the tabs, and Eqs. (6) and (14) were used

to determine the effects on the acoustic resonances. In each

of the cases discussed here, the frequency is normalized to

the actual frequency of the slit gong being modeled and the

parameter of interest is normalized to the actual value of the

carved gong.

A. Effect of changing the tab thickness

Altering the thickness of the free end of the tab of the

slit gong changes the tab resonance, as well as neck length

of the Helmholtz resonator and the inertance that perturbs

the closed-pipe resonance. The dependence of the frequen-

cies of the first two mechanical resonances of the tabs and

the two important acoustic resonances on the tab thickness

are shown in Fig. 7(a). Although the frequency of the Helm-

holtz resonance decreases monotonically as the tab thickness

is increased, the fundamental tab resonance is well fit to a

cubic polynomial. Therefore, whether the carver is increas-

ing or decreasing the tab frequency depends on exactly how

much of the tab is already carved away. Decreasing the tab

thickness significantly increases the second closed-pipe reso-

nance, simultaneously decreasing the second tab resonance.

Changing the tab thickness could be used to tune the higher

tab resonance and higher pipe resonance, but only by

approximately 10% at most. Because of the uncertainty asso-

ciated with this parameter, altering the tab thickness does

not appear to be the best method of tuning either the
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mechanical or acoustic resonances. Indeed, as the thickness

of both tabs of all the slit gongs we have observed are very

similar, it does not appear that the carver uses this parameter

to do anything more than coarsely tune the gong.

B. Effect of changing the cavity radius

When the radius of the cavity is changed, the volume

of the cavity changes as well as the thickness of the walls.

The dependence of the acoustic and mechanical resonance

frequencies on the radius of the cavity is shown in Fig.

7(b). As the radius of the cavity is increased, both reso-

nance frequencies of the tabs decrease much more rapidly

than the Helmholtz resonance frequency. Further, changing

the radius of the cavity, which can only be increased, also

leaves the second pipe resonance largely unchanged. There-

fore, decreasing the wall thickness is an ideal method of

tuning the tab resonances. It appears that the carvers of the

Nigerian slit gongs take advantage of this as the cavity was

offset from the center of the log in all of the gongs we

examined, and the different resonance frequencies of the

tabs was almost completely attributable to the differences

in wall thickness.

C. Effect of changing the width of the holes

Changing the width of the holes of the slit gong changes

both the surface area of the holes as well as the tab length.

The dependence of the acoustic and tab resonance frequen-

cies on this change is shown in Fig. 7(c). Changes to the

Helmholtz frequency and the tab resonance are inversely

related, and the Helmholtz resonance increases slightly more

rapidly than the tab resonance decreases as the hole width is

increased. Changing the width of the hole can be used to

tune both the Helmholtz and tab resonances; however, it is

much more useful as a tuning parameter for the Helmholtz

resonance. It should also be noted that once carved, the origi-

nal hole width cannot be significantly altered due to the ge-

ometry of the gong. Therefore, changing the width of the

holes is most useful as a tuning parameter when the Helm-

holtz resonance needs to be increased by less than �10%.

A change in the hole width has approximately the same

effect on the second tab resonance as it does on the funda-

mental tab resonance, with the tab resonance decreasing as

the width increases. Conversely, the frequency of the second

closed-pipe resonance increases as the width increases. The

tab resonance decreases slightly more rapidly than the

FIG. 7. (Color online) Plots of the im-

portant mechanical and acoustic reso-

nance frequencies as a function of (a) tab

thickness, (b) cavity radius, (c) hole

width, and (d) hole length. The results

are normalized to the measured parame-

ters of the actual gong.
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closed-pipe resonance increases, and therefore changing the

hole width would be useful as a tuning parameter for the sec-

ond tab resonance. However, the lower and upper tab

resonances are shifted by the same amount, so altering the

hole width is a useful tuning parameter only if both tab reso-

nance frequencies need to be changed in the same direction.

D. Effect of changing the length of the holes

Finally, changing the hole length changes the surface

area of the hole as well as the tab width. A plot of the acous-

tic and mechanical resonance frequencies vs hole length is

shown in Fig. 7(d) and it can be seen that when the hole

length is increased the second pipe resonance and the two

tab resonances behave similarly, whereas the Helmholtz res-

onance increases significantly. Once the hole length has

reached a length near unity the tab resonances and the Helm-

holtz resonance behave similarly, but the second tab reso-

nance appears to change significantly as the hole length is

increased. This rapid increase in resonance frequency with a

small change in lh is due to the fact that the tab width

becomes smaller as the hole length is increased, and the sit-

uation approaches the case of having a completely open cav-

ity. As the model assumes a single node located in the center

of the cavity, it is likely that the behavior of the second pipe

resonance is not well modeled as the tab width approaches

zero. However, for a significant range from below unity to

slightly above it one may assume that the model is valid.

Because the resonance frequencies of all four resonan-

ces change in a similar manner as the hole length is

increased, this is not an ideal parameter for tuning the gong.

The hole length must be approximately the correct size to

ensure that the frequency of the Helmholtz resonance is

correct, but since carving too much away from the hole will

significantly change the second pipe resonance, the carver

would be wise not to use this parameter for fine-tuning.

VI. CONCLUSION

Although it appears to be a simple instrument, the Niger-

ian slit gong is a complicated system of interacting resonators.

From the power spectra of the air cavity and tabs of the three

gongs that were studied, it appears that the artisans attempt to

align the first tab resonances with the Helmholtz resonance of

the cavity, some more successfully than others. Similarly, the

second resonance of the tabs is aligned with the second

closed-pipe resonance. However, these conclusions are true in

detail only for the size of gong investigated here. The gongs

that were investigated in this study were all �0.5 m long, but

the slit gong can vary in size from 0.25 m to more than 3 m.

As a result, although it appears that the artisan attempts to

ensure that the frequencies of a mechanical and acoustical res-

onance are coincident, the actual acoustic resonances of inter-

est change depending on the size of the gong. For example,

an investigation of a gong approximately half the length of

those discussed previously shows that the artisan tuned the

higher tab resonance frequencies to fall near the fundamental

closed-pipe resonance frequency, rather than the frequency of

the second resonance. Despite the differences arising from

size, the goal of the artisan still appears to be the overlap of

both higher and lower tab resonance frequencies with one of

the acoustic resonance frequencies. These coincident resonan-

ces result in a transfer of power from the tabs to the air cavity,

which along with the highly damped motion of the tabs results

in a loud, short sound when the gong is struck.

The results presented here indicate that tuning the slit

gong is not a straightforward task. Altering most of the pa-

rameters of the gong results in simultaneous and significant

changes to the acoustic and mechanical resonances. How-

ever, decreasing the wall thickness is most likely the best

method for tuning the tab resonance, while increasing the

width of the holes is the best method for tuning the Helm-

holtz resonance. Analyses of the slit gongs available for

study indicate that indeed these are the two parameters the

artisan uses most effectively, since in all of the examples

studied the two tabs of a gong are of almost identical length,

width, and thickness even though the resonance frequencies

differ significantly. Although it is highly improbable that the

carver is aware of the physics describing the gong, he has

managed to perform a highly nonlinear optimization prob-

lem with surprising accuracy.
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