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Interferometric studies of a piano soundboard
Thomas R. Moore and Sarah A. Zietlow
Department of Physics, Rollins College, Winter Park, Florida 32789
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Electronic speckle pattern interferometry has been used to study the deflection shapes of a piano
soundboard. A design for an interferometer that can image such an unstable object is introduced, and
interferograms of a piano soundboard obtained using this interferometer are presented. Deflection
shapes are analyzed and compared to a finite-element model, and it is shown that the force the
strings exert on the soundboard is important in determining the mode shapes and resonant
frequencies. Measurements of resonance frequencies and driving-point impedance made using the
interferometer are also presented. © 2006 Acoustical Society of America.
�DOI: 10.1121/1.2164989�

PACS number�s�: 43.75.Mn, 43.40.At, 43.20.Ks �NHF� Pages: 1783–1793

I. INTRODUCTION

A complete understanding of how the dynamics of the
modern piano creates its unique sound is unlikely without a
thorough understanding of the soundboard. Probably the
most important parameter associated with the soundboard is
the impedance at the point where the strings meet the bridge,
and there are several reports of investigations of the depen-
dence of the driving-point impedance on frequency.1–6 How-
ever, there are parameters beyond the mere value of the im-
pedance at the terminating point of the strings that are
important. Of particular interest are the soundboard deflec-
tion shapes. These shapes have been reported to be similar to
the shapes of the normal modes for frequencies below ap-
proximately 200 Hz; above this limit the resonances of the
soundboard are believed to be broad and closely spaced so
that the deflection shapes do not necessarily resemble the
mode shapes.7,8 Understanding the deflection shapes is im-
portant not only because they provide some insight into the
physical basis for the impedance structure at the bridge, but
also because they can provide insight into effects, such as
acoustic short circuiting, which may not affect the driving
point impedance but may significantly affect the sound per-
ceived by the listener.

The most common methods for determining the deflec-
tion shapes of objects include observing Chladni patterns,
measuring the acoustic power as a function of position, mak-
ing impact measurements, and performing holographic or
speckle pattern interferometry. However, each of these tech-
niques is difficult to use in determining the deflection shapes
of a piano soundboard.

In principle Chladni patterns are simple to create, but
they are extremely difficult to obtain on a fully assembled
piano for several reasons. Although some Chladni patterns
have been obtained on a soundboard isolated from the
piano,3 the utility of this method is limited by the necessity
to physically access the entire soundboard, the requirement
that the soundboard be oriented horizontally, and the fact that
there are ribs and other attachments that segment the surface.

Recently, acoustic measurements have yielded informa-
tion on the shapes of the lowest modes of a piano sound-
board; however, these measurements have very low spatial

resolution.9,10 Likewise, mechanical measurements of the de-
flection of a soundboard have been made by physically plac-
ing accelerometers on an isolated soundboard as it is struck.
This technique is limited by the necessity for physical access
to all points of the soundboard, and it is therefore not fea-
sible to perform the measurements on a fully assembled pi-
ano. Furthermore, the measurement process can potentially
change the resonance structure and the spatial resolution is
quite low.2,7,8,11

Time-averaged holographic or speckle pattern interfer-
ometry both provide interferograms that can reveal the de-
flection shape of a vibrating object, and both techniques have
been used often to determine deflection shapes of musical
instruments. However, the size and mass of a fully assembled
piano make both types of interferometry a very difficult un-
dertaking. Specifically, these interferometric techniques re-
quire extensive vibration isolation. A good estimate of the
requirement for vibration isolation is that the movement of
the object due to ambient vibrations must be significantly
less than one-tenth of the wavelength of the light used to
image the object. This stability must be maintained over the
entire time it takes to perform the experiment. The high cen-
ter of mass, large surface area, and wooden construction of a
piano make this level of isolation problematic. Even when
enclosed within a soundproof room, and mounted on sup-
ports with active vibration control mechanisms, vibrations
that are transmitted through the support structure usually
make such large objects too unstable to be effectively studied
using these techniques.

To investigate the deflection shapes of a piano sound-
board, we have modified the common form of the speckle
pattern interferometer so that ambient vibrations that are dif-
ficult to eliminate do not degrade the time-averaged inter-
ferogram. In fact, when using this interferometer the decor-
relation of the speckle pattern actually increases the precision
of the measurements. This modification, combined with a
recently reported modification that reduces the complexity of
the interferometer while simultaneously reducing the neces-
sary laser power,12,13 has enabled us to optically investigate
the deflection shapes of a fully strung piano soundboard in
situ.
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In what follows we describe this interferometer, the
theory of its operation, and its application to the study of a
piano soundboard. We begin by discussing the most common
form of the electronic speckle pattern interferometer and
highlight the problems associated with using it to investigate
the soundboard. We then describe a modification to the in-
terferometer and present a theory showing that with this
modification a slow decorrelation of the speckle pattern en-
hances the sensitivity. Next, we present some interferograms
of the deflection shapes of the soundboard of a fully as-
sembled piano that were made using this method, discuss
their implications, and compare interferograms of the lowest
modes with finite-element models. Finally, we demonstrate
that data obtained using this interferometer can be used to
determine the resonance curves of the soundboard, as well as
make measurements of the driving-point impedance.

II. THEORY OF TIME-AVERAGED ELECTRONIC
SPECKLE PATTERN INTERFEROMETRY
WITH DECORRELATION

The arrangement of the electronic speckle pattern inter-
ferometer used in our experiments is shown in Fig. 1. It is a
modified version of the more common arrangement and a
detailed description can be found in Refs. 12 and 13. To
create an interferogram, a beam of coherent light is reflected
from an object and imaged through a beamsplitter onto a
charge-coupled device �CCD� array. A reference beam is di-
rected through a delay leg and illuminates a piece of ground
glass, which is also in the view of the imaging lens through
reflection from the beamsplitter. To study harmonically vi-
brating objects, the image present on the CCD array is digi-
tally stored prior to the onset of harmonic motion of the
object. Once the object is executing harmonic motion, the
image on the array is then subtracted from the initial image
in real time.

This situation can be described theoretically by assum-
ing that the object under investigation is moving with simple
harmonic motion, with an angular frequency of �0 and an
amplitude of �z. Assuming that the size of the speckle is
approximately the size of a single pixel element, the intensity
of the light on a pixel is given by

I = Ir + I0 + 2�IrI0 cos � , �1�

where Ir and I0 are the intensities of the reference and object
beam, respectively, and

� = �0 + � sin��0t� . �2�

In this equation

� =
2��z

�
�cos �i + cos �r� , �3�

and �0 is the initial difference in phases of the two beams at
the pixel element. In Eq. �3�, �i and �r represent the incident
and reflected angles of the object beam measured from the
normal to the surface of the object under study, and � is the
wavelength of the light.

For the case considered here the integration time of the
detector is long compared to the period of the motion; there-
fore, it records only the time-averaged intensity of the inter-
ference. Assuming that the intensities of the two beams are
constant in time, the recorded intensity is given by

�I� = Ir + I0 + 2�IrI0�cos��0 + � sin��0t��� , �4�

where the angled brackets indicate a time average. Perform-
ing the time average explicitly reduces Eq. �4� to14

�I� = Ir + I0 + 2�IrI0 J0��� cos �0, �5�

where J0 represents the zero-order Bessel function of the first
kind.

The most common method of viewing the amplitude of
displacement is to record an initial image before the onset of
vibration of the object and subtract it from an image re-
corded subsequent to the onset of harmonic motion; the ab-
solute value of the difference is then displayed on a computer
monitor. In this case the intensity recorded by the first frame
is given by

I1 = Ir + I0 + 2�IrI0 cos �0, �6�

and the intensity recorded after the onset of vibration of the
object is given by Eq. �5�. When the two are subtracted, the
intensity of the pixel displayed on the monitor after the nth
frame is given by

In = �n�1 − J0���� , �7�

where �n is a positive constant with a value that depends
upon the relative intensities of the image and reference
beams, as well as the details of the display.

For the interferometer to provide the results indicated by
Eq. �7�, the object must be stable enough such that the
speckle pattern does not decorrelate in the time between ob-
taining the initial and final image. Therefore, the interferom-
eter and the object under study are typically isolated from
ambient vibrations.

When the object under investigation is large or flimsy,
adequate isolation from ambient vibrations can become dif-
ficult. Any displacement due to motion of the structure upon
which the object rests increases linearly with height, and an
object with a high center of mass, such as a piano, enhances
the effects of any slight motion. Even when the interferom-
eter and the piano sit on tables with active pneumatic vibra-

FIG. 1. �Color online� Diagram of the electronic speckle pattern interferom-
eter.
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tion isolation, and the entire apparatus is enclosed within a
room without circulating air, we have found that the speckle
can decorrelate on a time scale significantly less than
1 second. This decorrelation may occur even more quickly if
the interferometer and the object under study are indepen-
dently supported, which may be required to image large ob-
jects such as pianos.

To include the decorrelation due to ambient vibration, an
extra term must be added to Eq. �2�. While the ambient vi-
brations may contain many frequencies, it is most difficult to
isolate a large object from vibrations with long periods;
therefore, we assume that the period of the movement re-
sponsible for speckle decorrelation is significantly greater
than the period of the oscillation of interest. Under this con-
dition,

� = �0 +
2�

�
� sin�	t� + � sin��0t� , �8�

where � is the amplitude of the oscillation and it is assumed
that 	
�0.

If the integration time of the detector is short compared
to 	−1, the small angle approximation may be applied and the
movement can be approximated as a slow linear movement
over the integration time of the detector. In this case Eq. �8�
becomes

� = �0 + 	t + � sin��0t� . �9�

Equation �9� can also be written as

� = �0 + ��0t + � sin��0t� , �10�

where �
1. If the integration time of the detector is short
compared to 	−1, the intensity of the light incident on a pixel
of the recording array is given by

�In� = Ir + I0 + 2�IrI0�cos��0 + ��0t + � sin��0t��� . �11�

When integrated, the function within the angled brackets in
the above equation is a form of the equation known as An-
ger’s function, which is a generalization of the Bessel func-
tion of the first kind.14 When � is an integer, Anger’s func-
tion reduces to a Bessel function of order �.

Since we have assumed that �
1, we can approximate
the time-averaged term in Eq. �11� as Anger’s function with
�=0. In this case Eq. �11� reduces to Eq. �5�. However, since
the small-angle approximation used to obtain Eq. �10� is not
valid for times that are not short compared to 	−1, �0 cannot
be considered to be constant over long periods of time. That
is, although we may assume that � is approximately zero for
the purpose of evaluating Eq. �11�, any nonzero value of �
will result in a time-varying value of �0 that cannot be ig-
nored over time periods that are not short compared to 	−1.

If the time between the collection of images in electronic
speckle pattern interferometry is long compared to 	−1, and
the integration time of the detector is short compared to this
value, subtracting the pixel value recorded after the onset of
vibration from the value of the same pixel recorded before
the onset of vibration will generally provide a nonzero result.
This nonzero result will occur even when the object has not
been intentionally set into motion. Therefore, speckle pattern

interferometry yields no usable information about the har-
monic movement of the object unless the time between im-
ages is short compared to 	−1.

However, when the initial image and the final image are
both recorded while the object is oscillating at frequency �0,
rather than the initial frame being recorded prior to the onset
of vibration, Eq. �11� describes the intensity of both images.
Under these circumstances the intensity shown on the com-
puter monitor is proportional to the absolute value of the
difference between the pixel values in the mth and nth im-
ages, i.e.,

Imn = �mn�J0���� , �12�

where in this case the value of �mn depends not only upon
the details of the monitor settings, but also on the value of
the phase angle �0, which is slowly varying in time and
therefore changes slightly between the mth and nth frames.
That is,

�mn  �cos �m − cos �n� , �13�

where �m and �n represent the value of the initial phase angle
for the mth and nth image, respectively.

If the object is too stable, such that cos �m=cos �n, the
resulting interferogram will be uniformly black and yield no
information despite any harmonic movement of the object. In
this case it is necessary to subtract an image taken after the
onset of vibration from one taken before vibration begins for
the interferogram to provide any useful information. Like-
wise, if the movement that produces the decorrelation is not
well approximated by a linear function over the integration
time of the detector, then Eq. �12� is not valid.

In the case where there is a slow decorrelation of the
light, such that over the integration time of the detector
cos �m�cos �n and �
1, then the brightness of the pixel
displayed on the screen will be proportional to �J0����, and
lines of equal displacement will occur when

J0��� = 0, �14�

where � is defined by Eq. �3�. Averaging over several frames
will eliminate the possibility of a spurious result due to
cos �m and cos �n being equal simply by chance.

Note that Eq. �12� indicates that nodes in the soundboard
will appear white on the monitor, while black lines indicate
contours of equal amplitude of vibration. In the case where
the initial frame is recorded before the onset of harmonic
vibration, Eq. �7� indicates that areas of no movement appear
as black, while white lines indicate contours of equal ampli-
tude. Note also that the resolution of the system described by
Eq. �12� is twice that described by Eq. �7�, because Eq. �12�
indicates that minima in the interferogram occur at every
point where the Bessel function has a value of zero. Equation
�7� indicates that minima occur only at the maxima of the
Bessel function.

In the case where the object under investigation is stable
so that cos �m=cos �n, a slow linear shift can be added to
either the reference beam or the object beam; similarly, a
slow physical motion of the object can be induced artificially.
Either of these techniques will ensure that � is nonzero but
significantly less than unity, and will result in the increased
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precision of the interferometer. Yet, precision is seldom the
problem when attempting electronic speckle pattern interfer-
ometry in the laboratory.

As noted above, large objects such as pianos are nor-
mally not stable enough to image using electronic speckle
pattern interferometry due to the presence of small ambient
motions transmitted through the support structure. However,
if the ambient motion is slow compared to the driving fre-
quency �0, the motion will decorrelate the speckle within the
constraints outlined above. In this case, speckle pattern inter-
ferometry can be used to study the motion of these objects.
That is, as long as there is some slowly varying motion of the
object, even if the motion is caused by ambient vibrations
that normally precludes the use of interferometry, useful in-
terferograms can be obtained.

Before concluding this section we note that assuming
�	0 ensures that we can approximate the time average in
Eq. �11� as a zero-order Bessel function of the first kind.
However, this is not a necessary approximation since Eq.
�11� can be calculated explicitly for any value of �. Interfero-
grams can be obtained even for large values of �; however,
knowledge of its value is necessary to make measurements
of the amplitude of the motion. We address this issue further
in Sec. IV.

III. EXPERIMENTAL ARRANGEMENT

All of the experiments reported here were performed on
a Hallet and Davis piano manufactured circa 1950. The piano
was a spinet model, with a soundboard measuring approxi-
mately 1.4�0.63 meters. The soundboard was of varying
thickness, as is usually the case; however, precise measure-
ments of the thickness were not possible without signifi-
cantly altering the piano and were therefore not made. The
profile of the bottom of the soundboard could be unambigu-
ously measured, and it was found that the thickness varied
from 4.4±0.1 to 6.9±0.1 mm.

The soundboard of the piano was made of solid spruce,
with the grain direction being 32° from the horizontal, diag-
onal from the upper left to lower right as viewed from the
back of the piano. There were 12 ribs made of pine and glued
to the back of the soundboard in an orientation perpendicular
to the grain. The ribs had a width of approximately 25 mm,
were spaced approximately 80 mm apart, and ranged in
length from approximately 217 to 725 mm.

There were two bridges on the front of the soundboard
over which the strings passed. A treble bridge, approximately
1.12 m in length was placed diagonally from the lower right
to the upper left, as viewed from the back. A bass bridge,
approximately 0.37 m long, was attached near the bottom of
the soundboard. The edges of the soundboard were sand-
wiched between the case and retaining timbers, resulting in
the edges being strongly clamped. Figure 2 contains a draw-
ing of the soundboard, as viewed from the back, indicating
the location of the bridges and orientation of the ribs.

Except where it is explicitly noted below, the piano
soundboard remained completely strung and attached to the
piano frame. No modification of the structure of the piano
was made except that the hammers were removed for easier

access to the treble bridge. The strings were all damped in
two or three places by weaving strips of cloth between them
to ensure that vibrations of the strings in no way affected the
soundboard vibrations.

The piano was mounted on an optical table with active
pneumatic vibration-isolating legs, and attached to the table
with a 3-in. nylon strap. The back of the piano was painted
white to efficiently reflect light.

The interferometer was made from discrete optical com-
ponents mounted on a separate actively isolated optical table.
The entire experimental arrangement, with the exception of
the laser, was contained within a 10�12�7 ft. room, which
was tiled with anechoic foam on all surfaces except for the
portions of the floor that supported the optical tables.

The laser used to illuminate the piano was a frequency-
doubled Nd:YVO4 laser with a wavelength of 532 nm and a
maximum power of 5 W. It was mounted outside of the
anechoic room on an optical table with active pneumatic
vibration isolation. The light entered the anechoic room
through a small hole in the wall. A commercial CCD camera
with a 768�494 pixel array and the standard 30-Hz frame
rate was used to record the images. The illuminating beam
and the imaging system were oriented perpendicular to the
soundboard, so that cos �i and cos �r were both very close to
unity.

Since the mass of the tables and the piano exceeded
1000 Kg, and the stability required for interferometry re-
stricts the relative movement of the interferometer and piano
to less than 50 nm, the floor of the chamber was not made of
a suspended wire mesh as is common. Rather, the floor of the
chamber was a portion of a concrete slab that comprised the
floor of the building. Although the interferometer and the
piano were mounted on tables with active vibration isolation,
and both were housed in a chamber tiled with anechoic foam,
there was a slight independent motion of the two tables at
low frequencies. This motion was transmitted to the tables
through the floor, with the peak transmissibility occurring at
approximately 1 Hz.

Under normal circumstances the motion of the tables
decorrelates the speckle and precludes the use of speckle
pattern interferometry. However, since the method outlined
above requires some decorrelation, the motion of the tables
was advantageous. Thus, the technique described above al-
lowed the use of speckle pattern interferometry in a situation
in which it is normally impossible.

As outlined in the theory above, an image from the cam-
era was digitally stored after the soundboard was set into

FIG. 2. Drawing of the orientation of the bridges and ribbing of the sound-
board as viewed from the back. The bridges are attached to the front of the
soundboard and the ribs are attached to the back.

1786 J. Acoust. Soc. Am., Vol. 119, No. 3, March 2006 T. R. Moore and S. A. Zietlow: Piano soundboard



harmonic motion. Each subsequent frame was then digitally
subtracted in real time from the previous image. Black lines
appeared on the interferogram when the condition set forth in
Eq. �14� was met.

During the experiments, vibrations of the soundboard
were induced at an angular frequency of �0. The two mo-
tions, one harmonic with angular frequency �0 and one
slowly varying so that it appeared linear over the integration
time of the detector, were completely independent of one
another. The slower vibrations occurred continually, regard-
less of the presence or absence of the driven harmonic mo-
tion.

Since the decorrelation time due to the ambient vibra-
tions was on the order of the integration time of the CCD
array, good interferograms were obtained by subtracting con-
tiguous frames, thus allowing real-time viewing of the inter-
ferograms. Some higher frequency ambient vibrations re-
sulted in noticeable noise in the interferograms, which was
manifest as a series of lines unrelated to the harmonic motion
of the piano. To eliminate these effects, and produce unam-
biguous interferograms for later analysis, up to 200 interfero-
grams were averaged before the image was digitally stored.
The total time of data collection for a single image, including
postprocessing, was less than 10 s.

To obtain interferograms showing the deflection shapes
of a piano soundboard, the apparatus described above was
used to study the soundboard as it was driven harmonically.
The driving force was provided by a speaker placed approxi-
mately 2 m from the soundboard. A high-quality function
generator provided a sinusoidal signal, which was subse-
quently amplified and sent to the speaker. Typical deflections
of the soundboard were less than a few wavelengths of the
illuminating light �i.e., 	0.1–2 �m� and required a sound
intensity level on the order of 50 dB.

In some cases an electromagnetic shaker was used to
drive the soundboard vibrations. The shaker was mounted on
an adjustable magnetic base so that the driving mechanism
could impinge upon any desired part of the soundboard.

IV. RESULTS AND ANALYSIS

A. Deflection shapes of a piano soundboard

Typical interferograms obtained using the apparatus de-
scribed above are shown in Fig. 3. Three vertical braces and
two carrying handles are visible in the interferograms, in
addition to the soundboard and the rectangular frame to
which it is mounted. The braces and handles are not physi-
cally touching the soundboard.

The interferograms in Fig. 3 show the deflection shapes
of the soundboard at three different frequencies ranging from
219 Hz to 2.8 kHz. The total amplitude of the deflection at
any point can be determined by counting the lines of equal
displacement from a nodal point. Table I lists the displace-
ment from the equilibrium position represented by each con-
tour line.

From observations of the interferograms at frequencies
between 60 Hz and 3 kHz, it appears that most of the reso-
nances of the soundboard are broad and overlapping. How-
ever, the lower resonances appear to be significantly sepa-

rated in frequency and therefore amenable to study. This
conclusion has also been reached by others.3,7,8 Interfero-
grams of the deflection shapes of the lowest three resonances
of the piano are shown in Figs. 4�a�, 5�a�, and 6�a�. The
resonant frequencies are shown in the second column of
Table II. The bandwidth of the resonances are on the order of
20 Hz; however, the peak response is easily discerned by
viewing the interferograms in real time while changing the
driving frequency.

The simplest model of a piano soundboard is that of an
isotropic rectangular plate clamped at the edges. Leissa has
reprinted the frequency parameters necessary for finding the
resonant frequencies of rectangular plates with several aspect
ratios.15 The frequency parameter is defined as

� = 2�fa2� �

D
, �15�

where f is the resonant frequency, a is the length of the
shortest side of the plate, � is the area density, and D is the
rigidity of the plate, which is defined as

FIG. 3. Interferograms of the soundboard of a spinet piano. The vibrations
are driven acoustically from a speaker placed approximately 2 m away.

TABLE I. The total amplitude of vibration represented by the number of
dark lines traversed from a nodal point in an interferogram. Each line rep-
resents a point where Eq. �14� is valid.

Contour Displacement �nm�

1 102
2 234
3 366
4 499
5 632
6 765
7 898
8 1031
9 1164

10 1297
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D =
Eh3

12�1 − �2�
, �16�

where E is Young’s modulus, h is the thickness of the plate,
and � is Poisson’s ratio. Knowing the frequency parameter
for any mode uniquely determines the frequency of that
mode.

The aspect ratio of this particular soundboard is 0.45,
which is very close to the aspect ratio of 0.5, for which the
frequency parameters are reported by Leissa derived from
work by Bolotin.16 A good estimate of the correct value of
the frequency parameters can be determined from these val-
ues by interpolation, which yields frequency parameters of
23.9, 29.9, and 40.7 for the first three modes of the sound-
board.

Using Eq. �15�, the frequencies of the lowest modes of
an isotropic soundboard were calculated. The values for the
density, Young’s modulus, and Poisson’s ratio were taken
from the literature; all other parameters were measured.17

These calculated frequencies are shown in the third column
of Table II. This model is adequate to predict the approxi-
mate frequencies of the two lowest resonant modes of this

soundboard; however, there are significant variances between
the observed mode shapes and those of an isotropic rectan-
gular plate clamped at the edges.

An analysis of the mode shapes shown in Figs. 4�a�,
5�a�, and 6�a� leads one to believe that the soundboard is not
modeled well by a simple isotropic rectangular plate
clamped at the edges, even though the resonant frequencies
of the two lowest modes can be estimated using this model.
Since the ribs are oriented in the direction perpendicular to
the wood grain of the soundboard, and the spacing between
them is much smaller than the wavelengths of the bending
waves that are associated with the lowest modes in the wood,
the soundboard should present an almost isotropic medium
for the lower modes.2 However, the soundboard under inves-
tigation exhibits some large-scale anisotropy, which can be
deduced because the antinodes of all of the lowest three
modes are noticeably shifted from their expected, symmetric
positions.

Since the wavelength of the flexural waves in the sound-
board at these low frequencies is on the order of the size of
the soundboard, and there are no obvious small-scale aberra-

FIG. 4. Deflection shape of the first mode of the piano soundboard �a�
observed interferometrically; �b� predicted by finite-element analysis of an
isotropic soundboard; �c� predicted by finite-element analysis of an isotropic
soundboard with bridges attached; �d� predicted by finite-element analysis of
an orthotropic soundboard with ribs and bridges attached; and �e� observed
interferometrically with no string tension. The resonant frequencies are
listed in Table II.

FIG. 5. Deflection shape of the second mode of the piano soundboard �a�
observed interferometrically; �b� predicted by finite-element analysis of an
isotropic soundboard; �c� predicted by finite-element analysis of an isotropic
soundboard with bridges attached; �d� predicted by finite-element analysis of
an orthotropic soundboard with ribs and bridges attached; and �e� observed
interferometrically with no string tension. The resonant frequencies are
listed in Table II.
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tions in the mode shapes, it is likely that the cause of the
asymmetry in the mode shapes is not due to small asymme-
tries in the soundboard. Indeed, it is likely that the observed
asymmetries of the mode shapes are due to the presence of
the bridges.

To test this hypothesis a finite-element model was con-
structed using a commercially available software program.
The soundboard was assumed to be an isotropic board of
sitka spruce with a thickness of 5.6 mm, which was the av-
erage thickness at the bottom of the actual soundboard. The
model had approximately 39 000 elements and the edges

were assumed to be clamped. The results of the model are
shown in Figs. 4�b�, 5�b�, and 6�b�. The resonant frequencies
of the soundboard predicted by this model are found in the
fourth column of Table II. As expected, the modes are sym-
metric and the predicted resonant frequencies are similar to
those found analytically.

When the two bridges are added to the model the fre-
quencies of the two lowest resonances change little, but the
modal shapes of all three modes change significantly. The
resonant frequencies of the soundboard predicted by this
model are found in the fifth column of Table II. Figures 4�c�,
5�c�, and 6�c� show the shapes of the first three modes pre-
dicted by this model. Note that the antinodes and the nodal
lines are shifted from the positions predicted by the simple
model of an isotropic board. However, comparing these pre-
dictions with the interferograms shown in Figs. 4�a�, 5�a�,
and 6�a� reveals that these mode shapes do not compare well
with the experimental data. In particular, the antinode of the
first mode and the nodal line of the second mode are both
shifted to the incorrect side of the center of the soundboard.
Additionally, the predicted deflection shape of the third mode
remains significantly different than the experimentally ob-
served shape.

Despite the poor agreement between the observed and
predicted deflection shapes, the frequencies of the modes
predicted by this model agree quite well with the observed
frequencies. In particular, the addition of the bridges to the
model has a significant effect on the frequency of the third
mode. However, the large-scale anisotropy of the mode
shapes, which does not appear to be accounted for by the
presence of the bridges, indicates that it may be necessary to
include the orthotropic nature of the wood and the presence
of the ribs in the model.

The predictions of the mode shapes from a model that
includes the orthotropy of the wood, the ribs, and the bridges
are shown in Figs. 4�d�, 5�d�, and 6�d�. The resonant frequen-
cies of the soundboard predicted by this model are found in
the sixth column of Table II. Note that the predictions of this
model show better agreement with the experimentally ob-
served mode shape of the second mode than the previous
model, but the poor agreement between the predictions for
the first and third modes remains. Additionally, the predicted
frequencies for all modes are significantly changed, showing
poor agreement with the experimentally derived values.

From this analysis one may conclude that by adding
complexity to the model, and thus making it more similar to
the actual piano, the predicted resonant frequencies are

FIG. 6. Deflection shape of the third mode of the piano soundboard �a�
observed interferometrically; �b� predicted by finite-element analysis of an
isotropic soundboard; �c� predicted by finite-element analysis of an isotropic
soundboard with bridges attached; �d� predicted by finite-element analysis of
an orthotropic soundboard with ribs and bridges attached; and �e� observed
interferometrically with no string tension. The resonant frequencies are
listed in Table II.

TABLE II. The measured and calculated resonant frequencies �in Hz� of the soundboard. See the text for
details.

Mode
Measured
�±1 Hz� Analytical

FEA
isotropic

FEA
isotropic

with bridges

FEA
orthotropic

with ribs and bridges

Measured
without strings

�±1 Hz�

1 112 93 99 92 74 80
2 129 116 123 126 90 110
3 204 158 168 198 101 170
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shifted further from the actual frequencies. Furthermore, the
mode shapes predicted by the model are significantly differ-
ent from those observed experimentally.

The poor agreement between the model and the inter-
ferograms leads one to believe that one or more important
parameters are still missing from the model, despite the fact
that all of the obvious physical parts have been included. We
have determined that one of these parameters is the force
exerted by the strings on the bridge.

As noted by Conklin, the total force of the strings on a
modern piano is approximately 200 kN, and the bearing
force on the bridges is between one-half and 3 percent of the
string force.3 Thus, the total force on the bridges is in excess
of 2000 N. Although this force is distributed along the length
of the bridges, it is unlikely that a force of this magnitude
will not have an effect on the motion of the soundboard.

To determine if the bearing force of the strings does
indeed have a large enough effect on the frequencies and
mode shape to account for the differences between the model
and the experimentally derived shapes and frequencies, the
tension of each string was reduced until the string lay slack.
Once the strings were no longer exerting a force on the
soundboard, the experiments described above were again
performed. The resulting interferograms are shown in Figs.
4�e�, 5�e�, and 6�e�, and the measured resonant frequencies
are shown in the final column of Table II.

Comparing Fig. 4�d� with Fig. 4�e�, and Fig. 5�d� with
Fig. 5�e� indicates that the finite-element computer model of
the soundboard predicts the mode shapes and resonant fre-
quencies quite well, as long as there is no significant pressure
exerted by the strings. From this we may conclude that, al-
though work on experiments and modeling that has been
reported in the literature has largely ignored the pressure of
the strings on the soundboard, it does have a significant ef-
fect on the mode shape and resonant frequencies of the low-
est modes.

It is not clear, however, that the force due to the strings
has a significant impact on the deflection shapes at higher
frequencies. This can be seen by comparing the interfero-
grams shown in Fig. 3, made with the strings at full tension,
with those in Fig. 7, which were obtained with the sound-
board vibrating at the same frequencies after the strings had
been removed. The similarity of the interferograms indicates
that the effects of the string force on the deflection shape is
not as important at higher frequencies as it is at the lower
frequencies.

Eliminating the pressure on the bridges due to the strings
does have a significant effect on the shape and frequency of
the third mode, but the mode shape predicted by the model
still does not agree well with the interferogram of this mode.
Currently, we do not know why there is such poor agreement
between the model and the experiment for the frequency and
shape of the third mode.

It is interesting to note that once the pressure of the
strings is removed from the soundboard, the effects of the
individual ribs becomes apparent at low frequencies. Note,
for example, that the node of the second mode is parallel to
the side of the soundboard when the bridges are under the
pressure exerted by the strings, but without this pressure the

node follows the direction of the ribs. This indicates that the
soundboard of a piano can be modeled as an isotropic plate
at low frequencies only when the pressure due to the strings
is present. Evidently, it is not only the ribs that compensate
for the orthotropy of the wood at low frequencies, but the
pressure placed on the bridges by the strings appears to also
help in this regard.

As noted above, at frequencies above those of the lower
resonances, the pressure on the soundboard due to the strings
appears to be less important. One reason for this may be that
at higher frequencies the antinodes are small compared to the
size of the soundboard, and except for the antinodes very
near the bridges, the effect of the pressure on the bridge is
unimportant.

In closing we note that, while the discussion above deals
almost exclusively with the lowest two modes of the sound-
board, the motion of the soundboard at these frequencies is
extremely important in determining the overall tonal quality
of the sound. For example, the asymmetry in the second
mode, evident in Fig. 5�a�, reduces the efficiency of acoustic
short-circuiting between the two antinodes. This causes the
lower frequencies to be radiated more efficiently than would
be possible with a completely symmetric mode shape.

B. Comparison of the vibrational patterns of an
acoustically driven and a point-driven soundboard

Although the deflection shapes of the soundboard are
dependent only upon frequency when driven by a distributed
acoustic signal, they can vary significantly when driven me-
chanically at a specific point. Since several resonances may
be excited at any frequency, the position of the excitation
will determine which resonances will be most efficiently ex-
cited. Therefore, excitation may occur at a node of a mode at
one point but at an antinode at another, leading to the fact
that the point of excitation will determine the deflection
shape to a great extent.

FIG. 7. Interferograms of the piano soundboard with the strings removed.
The frequencies of vibration are the same as those in Fig. 3.
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To demonstrate the extent to which this can affect the
deflection shape of the soundboard, an electromechanical
shaker was placed so that it impacted the bridge near the
terminating point of the C4 string on the treble bridge of the
piano. Figure 8�a� shows the deflection shape of the sound-
board when driven mechanically at a frequency of 328 Hz.
For comparison Fig. 8�b� shows the deflection shape when
the soundboard is driven acoustically at the same frequency
by a speaker placed 2 m away. The difference between the
two images in Fig. 8 leads one to ask if the shape of the
bridge is actually designed to take advantage of the mode
shapes of the soundboard.

Giordano has proposed that the shape of the bridge is
designed to ensure that each string terminates near a location
such that it cannot strongly excite a resonance in the sound-
board at the fundamental frequency of the string.4 This im-
plies that each string terminates near a node in the sound-
board, thus ensuring a slow transfer of energy to the
soundboard from the string, and a commensurate lengthening
of the decay time. We have investigated this conjecture by
acoustically driving the motion of the soundboard at the fun-
damental frequency of each string using a speaker placed
approximately 2 m away, and observing the deflection shape
at the terminating point of the string associated with that
frequency. In almost every case, the terminating point of the
string lies extremely close to a node in the soundboard. Of
all 88 strings, only the termination of the D5 string was not
close to a node when the soundboard was driven at the fun-
damental frequency of the string. The termination of the D5
string was approximately midway between a node and anti-
node.

Preliminary experiments on other instruments indicate
that not all pianos are designed so that the strings terminate
near nodes in the soundboard at the fundamental frequency
of vibration. Observations on a 6-ft. grand piano show that
many of its strings terminate near antinodes.

C. Resonance measurements

Using the interferometer it is also possible to determine
the resonance curve of the soundboard as long as a single
antinode can be associated with an individual resonance. To

do this it is only necessary to plot the amplitude of the de-
flection of one antinode of the mode as a function of fre-
quency. Figure 9 contains such a plot of the lowest three
modes of the soundboard without the strings.

The data shown in Fig. 9 were derived by driving the
vibrations of the soundboard with a speaker placed approxi-
mately 2 m from the piano. The amplitude of the motion was
determined using the interferometer as the driving frequency
was varied. Using this technique it is possible to determine
the frequency at which the modes begin to overlap signifi-
cantly, thus setting an upper limit on modeling the sound-
board as having individually isolated resonances. The data
shown in Fig. 9 indicate that below approximately 200 Hz
the modes are spaced widely enough to analyze them inde-
pendently, although there is some overlap between the first
and second modes far from resonance. Above this frequency
the positions of the antinodes begin to shift noticeably with
slight changes in frequency, indicating that there is signifi-
cant overlap of the modes.

D. Measurement of the driving point impedance

The driving-point impedance determines much about the
interaction of the string with the soundboard. It is defined as
the driving force divided by the velocity, and to determine
the driving-point impedance both of these quantities must be
measured simultaneously. In the past, an impedance head
that simultaneously measures the applied force and the ac-
celeration has been used to determine the driving-point im-
pedance; however, this arrangement has some disadvantages.
The size and shape of these devices make it difficult to make
measurements in the confined spaces of many pianos; there-
fore, only a limited number of measurements have been
made on a fully assembled piano. Also, there have been re-
ports of discrepancies in measurements that may be traceable
to the construction and application of these devices.1,6

We have used an electronic speckle pattern interferom-
eter to measure the driving-point impedance at several points
on the soundboard, and at several different frequencies, with-
out the use of an accelerometer. The interferometer was used
to determine the velocity of the driving point while a shaker
vibrated the soundboard at the point of interest. To measure

FIG. 8. Interferograms of the soundboard �a� when driven at a point on the
bridge, and �b� when driven by a distributed acoustic source.

FIG. 9. Plot of amplitude of vibration vs frequency for the lowest three
resonances of the piano soundboard.
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the force applied to the soundboard, a force-dependent resis-
tor was placed on the bridge at the point where the shaker
touched it. An operational amplifier produced a voltage that
was linearly proportional to the force exerted on the resistor.

Since the soundboard was driven harmonically at an an-
gular frequency �0, the velocity of the driving point was
given by

v = A0�0 cos �0t , �17�

where A0 is the amplitude of the displacement. As the force
was increased from zero, a black spot appeared at the posi-
tion of the driving point when observed through the interfer-
ometer each time Eq. �14� was satisfied. This spot migrated
into a ring as the driving amplitude was increased, and even-
tually a new spot appeared at the driving point. This process
progressed until the limit of the driver was reached.

To determine the driving-point impedance, the force was
measured each time the interferometry indicated that Eq.
�14� was satisfied �i.e., a black spot appeared at the driving
point as viewed through the interferometer�. The force was
plotted as a function of velocity, which was determined using
Eq. �17�, with A0 determined from Eq. �14�. The driving-
point impedance is the slope of this graph, which was found
by performing a linear regression. A typical graph of the
force versus the velocity of the fully assembled soundboard
is shown in Fig. 10. Each point is the result of three inde-
pendent measurements of the displacement at the driving fre-
quency. The uncertainty in the driving-point impedance is
taken to be the uncertainty in the slope.

The advantages of this measurement system stem from
the fact that the velocity is measured both directly and re-
motely. The remote measurement alleviates problems associ-
ated with the mass of an impedance head affecting the mea-
surement of acceleration. Likewise, there are no resonances
of the measuring system that can affect the results. Finally,
this method provides an estimate of the uncertainty of the
measurement, which is taken to be the uncertainty in the
slope of the plot.

Before concluding this section, we note that the data
presented here indicate that the approximations made in Sec.
II are valid. Specifically, the linearity of the data used to
determine the driving-point impedance, such as the example
shown in Fig. 10, can only be possible if indeed the lines of
equal displacement occur at the points determined by Eq.
�14�. Therefore, in the experimental arrangement described
here, the assumptions that the functional form of Eq. �10�
describes the movement of the soundboard and that �
1 are
valid. However, should an instance occur where these data
are not linear, the value of � could be determined simply by
fitting the data to the equation J����=0, using � as a fitting
parameter.

V. CONCLUSIONS

We have described a method of electronic speckle pat-
tern interferometry that not only works with moderate deco-
rrelation of the speckle pattern, but demands it. We have
shown theoretically and experimentally that this arrangement
can be used to determine the deflection shapes of an object
that is normally too unstable to observe interferometrically,
and applied it to the study of a piano soundboard in situ.

Using this interferometer we have investigated the dy-
namics of the soundboard of a piano and have compared the
results to a simple closed-form theory, as well as a finite-
element model. Comparison of the deflection shapes of the
piano to those predicted by these models demonstrates that
the pressure exerted by the strings on the soundboard can
make significant changes in mode shapes and resonant fre-
quencies. The presence of this pressure has a significant ef-
fect on the lowest modes, but appears not to be important in
determining the shapes and frequencies of the higher modes.

We have also shown that this interferometer can be used
to determine resonance curves and driving-point impedance.
We have presented the resonance curves for the lowest three
modes of a soundboard and shown that they do not overlap
significantly.

We close by noting that the applications of this interfero-
metric technique are not restricted only to the investigation
of piano soundboards. Harmonic vibrations of any unstable
object that meets the requirements outlined in Sec. II can be
observed using this technique. Additionally, the theory can
be applied outside of the approximations if the value of � in
Eq. �10� is known.
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