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A simple design for an electronic speckle pattern interferometer
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An electronic speckle pattern interferometer suitable for use in an undergraduate laboratory is
described. This interferometer can be built for a small fraction of the cost of a commercial version
and is simple and inexpensive to build and understand. The interferometer is useful for visualizing
the normal modes of vibrating objects as well as changes in index of refraction. ©2004 American

Association of Physics Teachers.
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I. INTRODUCTION

The electronic speckle pattern interferometer is a valuable
tool for studying the vibrations of objects, as well as visual-
izing changes in the index of refraction. The results are very
similar to those obtained using holographic interferometry,
and the process is sometimes inaccurately referred to as TV
holography. The electronic speckle pattern interferometer has
been well studied in the recent past, and is a useful tool for
researchers in many fields. An excellent review of holo-
graphic and speckle interferometry can be found in Ref. 1.

Because of the ease with which the vibrations and small
displacements of objects can be studied in real time, the elec-
tronic speckle pattern interferometer is the ideal tool for the
undergraduate laboratory as well as for classroom demon-
strations. The patterns of normal modes of vibration are es-
pecially dramatic when viewed using an electronic speckle
pattern interferometer, and it is the ideal method for demon-
strating unusual phenomena such as the splitting of the de-
generate normal modes of vibration due to asymmetries.2

Unfortunately, a commercial electronic speckle pattern inter-
ferometer costs well over $50,000. Such an expense is diffi-
cult to justify for a demonstration apparatus even if funds of
that magnitude are available.

An alternative to buying an electronic speckle pattern in-
terferometer is to build one from discrete optical compo-
nents. There are several of these in use, but the cost and
difficulty of building one is often daunting. We present a
design for an electronic speckle pattern interferometer that
can be built using items commonly found in an undergradu-
ate optics laboratory. This electronic speckle pattern interfer-
ometer enables students to visually detect the normal modes
of vibrating structures, visualize atmospheric aberrations
caused by heat flow or convection, and measure submicron
displacements. The design is simple enough that constructing
the interferometer is an ideal project for an undergraduate
student.

We begin by introducing the electronic speckle pattern in-
terferometer. We outline the theory and discuss the issues
surrounding building one. We then describe a new design
that eliminates the most difficult part of constructing an in-
terferometer of this type. We conclude with a discussion of
some typical results and an example of how the interferom-
eter can be useful in the context of a classroom or under-
graduate research laboratory.

II. THE ELECTRONIC SPECKLE PATTERN
INTERFEROMETER

An electronic speckle pattern interferometer relies on the
correlation between two speckle patterns, each one created
by the interference between a reference beam and the image
of an object illuminated by a laser. Typically the two images
are of an object before and after some deformation. Although
there are several variations on the basic design, the interfer-
ometer of interest here uses image subtraction to correlate
the two images. The process of measuring the correlation
between the two images does not need to be accomplished
electronically and was originally accomplished using film;
however, the electronic subtraction process makes the inter-
ferogram easy to form, view, and record in real time.

Here we are concerned primarily with observing and mea-
suring out of plane displacements of periodically moving
objects such as vibrating plates. A simplified diagram of the
version of the electronic speckle pattern interferometer most
often used for this purpose is shown in Fig. 1. Light from a
laser is separated into two beams; one beam serves to illu-
minate the object under study and the other acts as a refer-
ence beam. The object is imaged onto a charge coupled de-
vice ~CCD! array through a beamsplitter, which serves to
insert the reference beam into the optical path. The image
forming optics and the optics for the reference beam are
designed so that the two beams appear to emerge from the
exit pupil of the imaging lens system and therefore have the
same divergence. The combined beams form an image on a
CCD array or some other video capture device.

To view the effects of movement of the object, an image is
stored before the object is displaced. A second image is ob-
tained after displacement and the two images are subtracted.
The absolute values of the subtracted pixel values are then
multiplied by a constant and displayed on a computer moni-
tor. Pixels where the speckle pattern has not changed be-
tween the two images will subtract to zero and be displayed
as black. Pixels in positions where the speckle pattern has
changed will have a nonzero value and will be displayed as a
shade of gray or white.

A. Theory

A detailed theory of the operation of the electronic speckle
pattern interferometer can be found in Refs. 1 and 3, but for
the purposes of this article a heuristic understanding will
suffice.

We begin our discussion by assuming the simplified ar-
rangement shown in Fig. 2. We assume that the illuminating
beam is incident on the object at near normal incidence, and
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the image is coincident on an image plane with the coherent
reference beam. The object plane is designated by a coordi-
nate system with primes and the image plane is in the
unprimed coordinate system. If we designate the irradiance
of the image beam at the image plane asI i and the irradiance
of the reference beam asI r , then the irradiance of the com-
posite image on the array is given by

I 0~r !5I i1I r12AI i I r cos @e~r !#. ~1!

The irradiance of both beams is assumed to be uniform
across the field, and the phase of the reference beam is as-
sumed to be equal to the mean phase of the image beam
across the field because they both appear to emanate from the
exit pupil. The phase anglee(r ) is a function of position due
to the nonuniform phase of the image bearing beam caused
by the roughness of the surface of the object.

When a point on the object is displaced a distancedz8, the
phase change in the image plane is given by

De~r !5
4pdz8~r 8!

l
, ~2!

wherel is the wavelength of the light andr is conjugate to
r 8. After displacement, the irradiance on the array is given
by

I 1~r !5I i1I r12AI i I r cos @e~r !1De~r !#. ~3!

Clearly the maximum correlation between Eqs.~1! and ~3!
will occur whenDe(r )52np, wheren is an integer, and the
minimum correlation will occur whenDe(r )5(2n11)p. A
formal proof can be found in Appendix E of Ref. 1. When

the two images are subtracted, regions of complete correla-
tion will sum to zero while decorrelated regions will not. The
value of the subtraction of the two decorrelated images, and
hence, the image contrast, will depend primarily on the
speckle size, with the maximum contrast achieved when the
speckle size is equal to the size of the pixels. The mean
diameter of the speckle size can be estimated for this situa-
tion by4

d'1.22~11M !lF, ~4!

where M is the magnification of the image and F is the
aperture ratio of the lens~the f number!. The result of the
subtraction process will be an image of the object with dark
fringes where the displacement of the object results in a
phase change of even multiples ofp and bright fringes in
places where the phase change is an odd multiple ofp.

It is obvious from this discussion that electronic speckle
pattern interferometry is very effective at visualizing and
measuring small out of plane displacements; however, it also
is commonly used to visualize the harmonic vibrations of
objects. Typically these observations are accomplished using
time-averaged electronic speckle pattern interferometry.

In its simplest manifestation, time-averaged electronic
speckle pattern interferometry is accomplished by vibrating
the object under study at a single frequency and subtracting
the image of the vibrating structure from the original stored
image taken before the onset of vibration. In this case Eq.~2!
becomes

De~r ,v!5
4pdz8~r 8!

l
cosvt, ~5!

wherev is the angular frequency of the vibration. When the
integration time of the detector significantly exceeds the pe-
riod of vibration, the effect is to average the phase difference
and the result is given by1

I v~r !5I i1I r12AI i I r cos~e~r !!J0S 4p

l
dz8~r 8! D , ~6!

where J0 represents the zero-order Bessel function of the
first kind. The intensity of the image viewed on the display is
found by subtracting Eq.~6! from Eq. ~1! and taking the
absolute value of the result. Thus, to within a constant the
intensity of the final image is given by

I ~r !512J0S 4p

l
dz8~r 8! D . ~7!

Inspection of Eq.~7! reveals that the minima in the intensity
will occur at the maxima ofJ0, which are unevenly spaced
but easily calculated or found in tables. A reasonable esti-
mate of the spacing is that the first few maxima are separated
by integer multiples ofdz8(r 8);l/2. @The actual values for
dz8(r 8) for the first two maxima are 0.56l and 1.06l.#

Note that the fringe visibility is limited by the value ofJ0,
which is unity fordz8(r 8)50, but has a value of only;0.3
at the first maximum and decreases rapidly for subsequent
maxima; therefore, the fringe visibility will be significantly
less than unity. Additionally, the speckle appearance remains
in the final image, further degrading the fidelity of the result.
Methods for improving fringe contrast are discussed in Refs.
5 and 6 and the visibility of the speckle can be reduced by
appropriate spatial filtering of the image. However, in the
undergraduate laboratory and for many research applications,

Fig. 1. Schematic of an electronic speckle pattern interferometer that is
sensitive to out of plane displacement.

Fig. 2. Simplified schematic of the optical system of an electronic speckle
pattern interferometer. Coordinates in the object plane are designated by
primes; the image plane is in the unprimed coordinate system.
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the fringe visibility is more than adequate without resorting
to methods that increase the complexity of the apparatus. In
cases where the image contrast is not sufficient for publica-
tion, postprocessing of the final image with commercially
available software is usually sufficient.

B. Construction of an interferometer

An interferometer such as we have described and shown in
Fig. 1 consists largely of commonly available components.
The single exception is the optics required to combine the
image and reference beam. This arrangement requires the
design of a specific lens system for both the imaging lens and
the reference beam. Given the outstanding quality of inex-
pensive commercially available camera lenses, we wish to
image the object using one of these lenses. However, to do so
requires some careful optical engineering because a beam-
splitter must be inserted between the lens and the detector
and the spacing must be such that the curvature of the refer-
ence beam makes it appear to the detector as if it originates
at the exit pupil of the imaging optical system. Engineering
an optical system that meets these stringent requirements re-
quires some skill and expense and inevitably reduces the
fidelity of the imaging system.

Although these requirements are not insurmountable, the
necessary optical engineering to design such a system and
the expense of doing it might be daunting. One way to elimi-
nate the need for this cumbersome arrangement is to have the
reference beam and the image beam illuminate the surface of
the object as shown in Fig. 3. In this arrangement the need
for combining the reference beam and the object beam prior
to them reaching the detector is eliminated at the cost of
reduced sensitivity. In this case the phase factor in Eq.~3!
becomes

De~r !5
2pdz8~r 8!

l
~cosu r2cosu i !, ~8!

whereu i andu r are the angles of incidence of the image and
reference beams as shown in Fig. 3.~The terms image beam
and reference beam lose their meaning in this arrangement.!

Efforts have been made to maintain the maximum sensi-
tivity as well eliminate the need for a complex optical
systems;7,8 however, these designs require specially manu-
factured beamsplitters with a series of transparent, opaque,
and mirror stripes. This arrangement decreases the complex-
ity of the optical system, but the beamsplitters must be cus-
tom made and perfectly aligned.

We have designed an electronic speckle pattern interfer-
ometer that is simple to construct but does not sacrifice sen-
sitivity for simplicity. The design is shown in Fig. 4. In this
design the optical system used for imaging in the design
shown in Fig. 1 is replaced by a beamsplitter and a plate of
ground glass placed before the imaging optics. In this way a
commercial camera lens can be attached to a commercial
CCD array in the usual manner. The smooth reference beam
is now replaced by a speckled reference beam, but the mean
speckle size on the imaging array is not affected because it
depends only on the imaging optics and not on the details of
the object being illuminated.4 The analysis of the system is
unchanged from that presented previously with the exception
that the irradiance of the reference beam contains a position
dependent phase. Therefore, Eqs.~3! and ~6! describe the
output of this interferometer as well as the more familiar
version shown in Fig. 1.

To minimize the cost, it should not be necessary for the
source to have a high output power. Because a typical HeNe
laser may produce only a few milliwatts of power, the object
under study or thef number of the imaging lens must be
small. A smallf -number lens results in a speckle size at the
image plane that is smaller than a typical pixel; however, as
we show in the following, the speckle size can be signifi-
cantly smaller than the pixel size before the system becomes
unusable.

III. RESULTS

Here we describe the performance of a system built as
shown in Fig. 4. The design is optimized for low cost, but
commonly available optical hardware can improve the ease
and quality of the image if it is available. For example, the
apparatus shown in Fig. 4 uses a microscope slide acting as a
beam splitter and polarizers to provide variability in the in-
tensity of the reference beam. This arrangement can be re-
placed by a polarizing beam splitter bracketed by a half wave
plate on either side, which will allow for easier balancing of
the intensities of the reference and image beams. However,
cost is often a significant factor, so we have constructed the
apparatus as shown to demonstrate that it is quite adequate
for many applications.

The light source used was a 15 mW HeNe laser (l
5632 nm). This laser provided sufficient power to illumi-
nate an area approximate 50 cm in diameter. A 2-mm-thick
circular metal plate'17 cm in diameter and painted flat
white was used as the object of study. The imaging beam was

Fig. 3. An electronic speckle pattern interferometer using a simplified opti-
cal arrangement. Although this arrangement eliminates the need for a com-
plex optical system, it results in reduced sensitivity to out of plane displace-
ment.

Fig. 4. Schematic of an electronic speckle pattern interferometer that does
not require a complicated optical arrangement but does not have reduced
sensitivity.
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expanded using a microscope objective and then directed
toward the metal plate. The reference beam was directed
around a delay leg and expanded through a microscope ob-
jective before illuminating a piece of ground glass. A 2 in.
square 50/50 beamsplitter was oriented at 45° to the direc-
tion of observation and placed directly in front of the imag-
ing lens. The imaging system consisted of a commercially
availablef /1.2 C-mount camera lens mounted to a standard
CCD camera with a 6.434.8 mm sensing area and 8.4
39.8 mm pixel size.

Real time image processing was accomplished using a
desktop computer and a LabView program written by the
author. The software subtracted the real-time image from the
reference image and multiplied each pixel value by a factor
of 20. Of the components needed for the construction of the
interferometer, the computer interface and the software pack-
age for image subtraction were the most expensive compo-
nents not commonly found in undergraduate laboratories. It
is possible to use less sophisticated hardware and software,
and image subtraction can even be accomplished after the
fact using freely available imaging software. However, the
ability to view the image in real time is very valuable from
an educational standpoint, and we recommend some form of
real-time image subtraction.

If we substitute the values for the wavelength andf num-
ber into Eq.~4!, we find that the mean speckle size is ap-
proximately ten times smaller than the pixel size. Whenever
the speckle size is smaller than the pixel size, there is a
significantly reduced fringe visibility, and various methods
have been devised to overcome this problem.5,6 The stability
of the platform on which the interferometer is built is also an
issue because vibrations will tend to decorrelate the speckle.
The easiest and most efficient method of mitigating the ef-
fects of external vibrations is to mount the entire apparatus
on a vibration isolated optical table, but other methods also
have been investigated.9

Although all phenomena that can decorrelate the speckle
should be minimized to maximize the efficiency of the sys-
tem, for many applications the reduction in sensitivity due to
ambient vibrations and reduced fringe contrast is not severe
enough to be of concern. For example, Fig. 5 contains im-
ages of the circular plate vibrating in one of its normal
modes. These images were made using the system described
previously with all of the components mounted on a small
optical table with no vibration isolation. The vibrations of the

plate were driven acoustically by connecting a function gen-
erator to an amplifier and placing the speaker near the plate.
Although the image contrast can be improved with postpro-
cessing, the images shown in Fig. 5 were taken directly from
the real-time image with no enhancement. Clearly the image
quality is sufficient for instructional purposes as well as for
many research purposes.

The images shown in Fig. 5 are an excellent example of
the usefulness of this type of interferometer for instructional
purposes. When discussing normal modes of vibration, it is
common to demonstrate one or more of these modes using
sand or powder to create Chladni figures on a plate with the
vibrations driven by some external driver. This demonstra-
tion is a classic, but there are limitations to what can be
observed. For example, Chladni patterns do not allow one to
observe any aspects of the vibration except for the position
of the nodes, the technique is not useful for investigating
anything except horizontal flat surfaces, and it is very diffi-
cult to observe the presence of nearly nondegenerate normal
modes such as those shown in Fig. 5 and discussed in Ref. 2.
All of these problems are alleviated using electronic speckle
pattern interferometry instead of Chladni patterns to observe
the vibrations of an object.

In addition to viewing harmonic vibrations, the electronic
speckle pattern interferometer is very useful for viewing
changes in the index of refraction. Thus, the effects of the
heat flow from a student’s hand on the atmosphere is easily
imaged as well as gas and fluid flow. Naturally, imaging of
changes in the index of refraction can be accomplished quite
inexpensively with an interferometer such as a Twyman–
Green; however, the advantage of the electronic speckle pat-
tern interferometer is that the beam can be expanded so that
the area of observation is quite large, yet the size of the
optics remains quite small. For example, in the electronic
speckle pattern interferometer described here, the largest op-
tical component is the 2 in. square beamsplitter. The rest of
the optics is no larger than 1 in. in diameter, yet the area of
observation is approximately 50 cm in diameter. To view an
object of this size with a Twyman–Green interferometer
would require the beamsplitters, mirrors, and lenses to be as
large as the field of view and thus be extremely expensive.

IV. DISCUSSION

We note that there are several variations on the electronic
speckle pattern interferometer in the literature.10–13 These
variations typically allow the user to gain phase information
about the movement of the object and extend the range of the
interferometer. We see no reason why many of these varia-
tions cannot be implemented with the electronic speckle pat-
tern interferometer described here if the added information
justifies the cost of implementation. Additionally, the issues
discussed concerning vibration isolation and speckle size can
be addressed in various ways. However, as a demonstration
apparatus and for many research applications, these refine-
ments are not necessary.

The electronic speckle pattern interferometer is especially
useful when discussing normal modes of vibration. It also is
very useful for viewing and measuring submicron displace-
ments and changes in index of refraction when a large field
of view is required. Unlike similar demonstrations using
Chladni patterns, the object under study need not be flat or
horizontal. However, the interferometer’s most valuable edu-
cational use is in the advanced undergraduate laboratory. Ad-

Fig. 5. Interferograms of a 17 cm circular plate vibrating in one of its
normal modes. Theoretically the two modes occur at the same frequency,
however, the degeneracy is broken by a slight asymmetry in the plate. The
frequencies of vibration are 2133 and 2145 Hz.
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vanced undergraduate students can investigate such phenom-
ena as the vibrations of musical instruments, heat
conduction, and fluid flow. An excellent subject for an ex-
periment in an advanced undergraduate laboratory is the phe-
nomenon of the splitting of normal mode doublets in a vi-
brating plate as discussed in Ref. 2. By using an electronic
speckle pattern interferometer students can measure the reso-
nant frequencies of a plate and show that the splitting is
linearly proportional to the magnitude of the perturbing
mass.

In addition to its potential for educational use, this inter-
ferometer is a useful research tool. The electronic speckle
pattern interferometer has been used by many researchers for
several different types of investigations.14–18 Most of these
measurements are possible with the interferometer design
presented here. We hope that the simplicity and cost effec-
tiveness of this interferometer will encourage a wider use of
the technique in the classroom and in the undergraduate
laboratory.
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Figure 5 of this manuscript was printed incorrectly. The correct figure is shown below.

Fig. 5. Interferograms of a 17 cm circular plate vibrating in one of its normal modes. Theoretically the two modes occur at the same frequency, however,the
degeneracy is broken by a slight asymmetry in the plate. The frequencies of vibration are 2133 and 2145 Hz.
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