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The dynamics and tuning of orchestral crotales
Bradley M. Deutsch, Cherie L. Ramirez, and Thomas R. Moorea)

Department of Physics, Rollins College, Winter Park, Florida 32707

~Received 8 June 2004; revised 30 June 2004; accepted 13 July 2004!

An experimental and theoretical investigation of the acoustic and vibrational properties of orchestral
crotales within the rangeC6 to C8 is reported. Interferograms of the acoustically important modes
of vibration are presented and the frequencies are reported. It is shown that the acoustic spectra of
crotales are not predicted by assuming that they are either thin circular plates or annular plates
clamped at the center, despite the physical resemblance to these objects. Results from finite element
analysis are presented that demonstrate how changing the size of the central mass affects the tuning
of the instruments, and it is concluded that crotales are not currently designed to ensure optimal
tuning. The possibility of using annular plates as crotales is also investigated and the physical
parameters for such a set of instruments are presented. ©2004 Acoustical Society of America.
@DOI: 10.1121/1.1788728#

PACS numbers: 43.75.Kk, 43.40.Dx@NHF# Pages: 2427–2433

I. INTRODUCTION

In the field of musical acoustics percussion instruments
are understood especially well. To our knowledge, however,
there is a nearly complete absence of discussion of orchestral
crotales in the literature. The single exception appears to be a
short mention of their acoustic properties by Fletcher and
Rossing.1 While the termcrotalecan be associated with sev-
eral different types of percussion instruments, commercially
available orchestral crotales offer little diversity; they are
small cymbals with a central mass, as illustrated in Fig. 1.
These instruments are commonly found in orchestras around
the world and are commercially produced in the United
States by at least two large manufacturers of percussion in-
struments. Each crotale in a set is tuned to one note of the
Western musical scale and the note is stamped onto it for
identification. The sound is usually produced by striking the
instument with a mallet.

Crotales have a particularly pleasing sound, owing to the
fact that the dominant partials are the second, fourth, and
seventh harmonics of a nonexistent fundamental. The fortu-
nate arrangement of these partials is clearly the result of the
presence of the central mass, but to our knowledge there is
no published discussion of the subject.

While the outer radii of the crotales become smaller as
the pitch increases as one would expect, the radii of the
central masses of the crotales do not change betweenC6 and
C8 . The invariability of the radius of the center mass leads
one to question whether the tuning of each crotale is optimal.
Here we report on an investigation of the acoustic and vibra-
tional properties of a set of crotales in the two octaves from
C6 to C8 , identifying the vibrational modes and assessing
their relative importance to the sound of the instruments.
Evidence is presented demonstrating that the crotales are in-
deed not optimally tuned.

To assess the importance of the center mass on the nor-
mal modes of the crotale well-established thin plate theory is
used to predict the normal mode frequencies. There is poor

agreement between predicted and empirical values, and we
conclude that the presence of the center mass is responsible
for this discrepancy.

The center mass of a crotale causes it to physically re-
semble an annular plate that is free to vibrate at the outer
radius and clamped at the inner radius. Rigid mounting
through the center hole reinforces this resemblance. We
therefore develop a model of the crotales as annular plates.
Again, well-established theory is used to compare theoretical
predictions with experimental results, and they are again
found to be in poor agreement, although the agreement is
better than is found when comparing experimental results to
thin plate theory.

We finally turn to finite element analysis to facilitate an
understanding of the effects of the center mass on the tuning
of crotales. Within the model the height and radius of the
central mass of the crotales are varied. The effect of these
changes on the tuning of the crotales is then analyzed.

We conclude by presenting an alternative design for the
manufacture of crotales based on annular plate theory. We
present physical parameters for annular plates such that they
have similar acoustic properties to crotales. The validity of
this design as an alternative to commercially available cro-
tales is confirmed using finite element analysis.

II. EXPERIMENT

A. Identification of the acoustically important modes

The crotales used in this investigation were manufac-
tured by Zildjian Co. They span the octaves fromC6 to C8

and have diameters ranging from 132.8 to 76.560.1 mm. All
of the central masses are identical and have a diameter of
29.360.1 mm and a thickness of 13.160.1 mm. The thick-
ness of the thin plate portion of the crotales is also uniform,
measuring 4.760.1 mm. In order to determine the acoustic
properties of the crotales each one was mounted on a one-
inch diameter vibration-damping post that was secured to a
vibration-isolated optical table in an anechoic chamber. The
crotale was struck with a cork mallet and the sound wasa!Electronic mail: tmoore@rollins.edu
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digitized. Two time series were recorded at a sampling rate
of 40 kHz for each crotale in the set. The first series began at
the strike time and had a duration of 0.25 s. A power spec-
trum of this time series was used to approximately identify
the frequencies of many of the normal modes. The second
time series was begun two seconds after the strike and had a
duration of two seconds. Since this time series began after
the transient modes had decayed to negligible relative power,
the modes that are important in the steady-state sound of the
crotales were evident.

Figure 2 is a typical example of the steady-state power
spectrum of a struck crotale. Three modes are clearly visible,
with most of the power being contained in the first two
modes. As is commonly seen in other percussion instru-
ments, the degenerate mode doublets are occasionally split
due to slight asymmetries in the plate;2 this is clearly evident
in one of the modes shown in Fig. 2. Results from the other
crotales within the set are similar, though in some cases the
third mode is negligibly small and often none of the degen-
erate modes exhibit measurable splitting. We define an
acoustically important mode as one that contains at least one
percent of the total power, and using this definition there are
at most three acoustically important modes for each crotale.
In excess of 95% of the total power is contained within these
three modes for all of the crotales, with no other single mode
containing more than a small fraction of a percent of the total
power.

Time-averaged electronic speckle pattern interferometry

was used to characterize the vibrational patterns of the
modes of the crotales.3 To drive the vibrations, a speaker was
placed in the anechoic chamber containing the crotale. The
speaker was driven by a high-quality sine-wave generator. It
was demonstrated in a similar experiment that the location
and orientation of the speaker in the chamber does not affect
the modal structure of the vibrations of the object under
investigation.2 However, in order to drive the vibrations with
the maximum possible efficiency, the speaker was oriented
perpendicularly to the face of the crotales. Using this method
the three acoustically important modes were identified as the
~2,0!, ~3,0!, and~4,0! modes, where the integers represent the
number of diametric and circular nodes, respectively. This
procedure was repeated for each crotale in the set. The fre-
quencies of these modes for each crotale are shown in Table
I. Note that the ratios of the frequencies of the~3,0! to ~2,0!
modes are approximately 2:1 while the ratios of the frequen-
cies of the~4,0! to ~2,0! modes are approximately 7:2 for
each crotale. Typical electronic speckle pattern interfero-
grams are presented in Fig. 3. The center mass is not visible

FIG. 1. Illustration of a crotale.

FIG. 2. Typical power spectrum of a crotale. The three acoustically impor-
tant modes are clearly visible.

TABLE I. Diameters and frequencies of acoustically important modes of the
two-octave set of crotales. Frequency uncertainties are60.25 Hz.

Note Diameter60.1 mm ~2,0! mode ~3,0! mode ~4,0! mode

C6 132.8 1055.5 2117.5 3667.5
C# 130.1 1117.0 2230.0 3849.5
D 125.9 1184.0 2348.0 4049.5
D# 123.8 1259.0 2483.0 4270.0
E 120.8 1333.5 2621.0 4502.5
F 117.8 1411.5 2754.5 4731.5
F# 114.6 1495.5 2879.0 4927.0
G 111.5 1585.5 3021.5 5166.5
G# 108.0 1682.0 3145.5 5361.0
A 106.6 1784.5 3357.5 2708.5
A# 104.6 1889.5 3548.5 6033.5
B 103.2 1668.5 3743.0 6340.0
C7 101.6 2113.5 4043.5 6328.5
C# 98.0 2237.5 4214.5 6717.0
D 97.0 2361.0 4343.0 7082.5
D# 95.8 2521.5 4640.0 7554.5
E 91.6 2682.0 4777.5 8035.5
F 90.3 2832.5 5072.0 8492.0
F# 89.0 3004.0 5400.0 9011.5
G 86.2 3187.5 5609.0 9519.0
G# 84.4 3383.0 6106.0 10112.5
A 82.9 3584.5 6432.0 10792.0
A# 81.7 3801.0 6788.0 11224.0
B 79.5 4021.0 7144.0 11664.0
C8 76.5 4241.0 7380.0 11992.0

FIG. 3. Typical interferograms of the~2,0!, ~3,0!, and ~4,0! modes of a
crotale. The light regions indicate places where the crotale is moving. Black
regions indicate positions with little or no movement. The position of the
center mass is indicated by a solid white line.
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on the interferogram but is indicated by a solid white line in
the figure.

B. Analysis of the tuning of crotales

Based on the data presented above, we define an ideally
tuned crotale as one for which the~2,0! mode occurs at the
frequency corresponding to the note name stamped on the
crotale, and the frequency of the~3,0! mode is exactly one
octave higher than that of the~2,0!. Furthermore, the ratio of
the frequencies of the~4,0! and~3,0! modes is 7:4, making a
minor 7th. Using this definition, the tuning of each of the
crotales was compared to the ideal. Figure 4 shows the de-
tuning in cents of the~2,0! mode of each crotale from the
frequency of its corresponding note on the usual chromatic
scale.4 Generally, the~2,0! mode becomes less accurately
tuned as the scale is ascended. Although the ability of a
person to perceive a mistuned interval varies, a good musi-
cian can discriminate a 5 cents mistuning. Hall opines that it
is reasonable to insist that an organ be tuned to within 2 or 3
cents of the target pitch;5 we see no reason for this standard
not to be applied to crotales.

The ratios of the frequencies of the higher-order modes
to the ~2,0! mode show a similar trend as the scale is as-
cended. Figure 5 is a plot of the ratio of the frequencies of
the ~3,0! to ~2,0! and ~4,0! to ~2,0! modes for each of the
crotales, comparing each to the ideal 2:1 and 7:2 ratio. This
demonstrates clearly that the crotales become increasingly
detuned as the musical scale is ascended.

III. THEORY

A. Comparison to thin plate theory

Since crotales appear to be slightly modified thin plates
fixed at the center it is reasonable to suspect that they can be
accurately modeled using thin plate theory. Fortunately, thin
plates have been studied for centuries and are well under-
stood. Following the derivation presented by Leissa,6 the so-
lution to the general equation of motion for a thin circular
plate is

z5@A1Jn~kr !1A2I n~kr !1A3Yn~kr !

1A4Kn~kr !#cos~nu!sin~vt !, ~1!

wheren is an integer,z is the deflection of a point from the
equilibrium plane of the plate,u andr are polar coordinates,
Ai is a constant,Jn and I n are Bessel functions of the first
and second kinds, respectively, andYn andKn are modified
Bessel functions of the first and second kinds, respectively.
The constantk in the argument of the Bessel functions is
defined by

k45
12rv2~12n2!

Eh2
. ~2!

Here,n is Poisson’s ratio,r is the volume mass density,E is
Young’s modulus,v is the angular frequency, andh is the
thickness of the plate. Terms withKn andYn in Eq. ~1! must
be eliminated in this instance to prevent nonzero displace-
ment atr 50, leaving only two unknown parameters in Eq.
~1!. Furthermore, for a plate fixed at the center, then50
terms are absent for the same reason. The boundary condi-
tions at the edge of a plate of radiusa that is free to vibrate
are

Mr~a,u!50 ~3!

and

Vr~a,u!50, ~4!

where Mr is the bending moment, related to the displace-
ment by

Mr~r ,u!52DF ]2z

]r 2
1nS 1

r

]z

]r
1

1

r 2

]2z

]u2D G , ~5!

andVr is the Kelvin–Kirchoff edge reaction, defined by

Vr~r ,u!52D
]

]r
~¹2z!1

1

r

]Mru

]u
. ~6!

Here,D is the flexural rigidity, defined as

FIG. 4. Departure of the~2,0! mode from ideal tuning. If ideally tuned there
would be no difference between the~2,0! mode and the frequency of the
note according to the Western musical scale. The crotales correspond to
numbers 1 through 25, respectively, withC651 andC8525. Uncertainties
are smaller than data points.

FIG. 5. Ratios of the frequencies of acoustically important modes. Open
diamonds represent the ratios of the frequencies of the~3,0! to ~2,0! modes.
Closed diamonds represent the ratios of the frequencies of the~4,0! to ~2,0!
modes. The crotales correspond to numbers 1 through 25, respectively, with
C651 andC8525. Note the departure from ideal tuning of 2:1 and 7:2.
Uncertainties are smaller than data points.
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D5
rv2

k4h
. ~7!

Upon applying these boundary conditions to Eq.~1!, the ei-
genvalues determine the frequencies of the normal modes of
the plates. We define a nondimensional frequency parameter
as

l5ka, ~8!

which can be used as a general solution for normal-mode
frequencies, independent of the physical parameters of the
plate.

In describing crotales as thin circular plates we assume
that the physical parameters of every crotale are identical
with the exception of the plate radius. Young’s modulus and
Poisson’s ratio for yellow brass were taken from the
literature;7 all other physical parameters were measured. The
values of the parameters used are given in Table II. Table III
lists values ofl and predicted frequencies of the acoustically
important modes for theC6 , C7 , andC8 crotales, as well as
the error that results by comparing them to measured values.
Note that it is not only the absolute frequencies that show
poor agreement, but the ratios of the frequencies of the
modes also do not agree with the experimental values.
Clearly, this model is insufficient to predict the normal
modes of crotales.

One possible explanation for this discrepancy is that the
thickness of the plates in question violates the assumption of
a thin plate. The thin plate theory outlined above applies only
to plates for which the thickness is much less than the plate
diameter. Although this appears to be a valid approximation
given the physical parameters of the crotales, it is possible
that it is not. In order to confirm the validity of modeling the
crotales as thin circular plates the center masses of two of the
crotales (D6

] andF6) were milled off to create a thin plate.

The frequencies of the normal modes were then experimen-
tally determined and identified using the method described
above and compared to predicted values for thin plates. The
experimental values fall within 1.5% of the theoretical values
for all but the~4,0! mode of theF6 crotale, which deviates
by approximately 2.4%. This supports the hypothesis that the
crotales without the center mass may be modeled as thin
plates. This also confirms that it is indeed the presence of the
center mass that is responsible for the proper tuning of the
crotales.

B. Comparison to annular plate theory

Since the crotales are physically clamped at the center
when mounted for playing, and the interferograms shown in
Fig. 3 indicate minimal movement of the central mass during
play, one may suspect that crotales may be modeled as an-
nular plates free to vibrate at the outer radius and clamped at
the inner radius. To investigate this hypothesis further we
model the crotale as an annular plate following the methods
of Vogel and Skinner.8 Using an approach similar to the thin
plate theory described above, we begin with Eq.~1!; this
time, however, the terms containingKn andYn are allowed,
since r 50 is not included as a boundary condition. Vogel
and Skinner define the nondimensional frequency parameter
for an annular plate to be

l85vS 4ra4

Eh2 D 1/2

; ~9!

the relationship betweenl andl8 is therefore

l85
l2

A3~12n2!
. ~10!

The boundary conditions for an annular plate clamped at the
inner edge and free to vibrate at the outer edge are

]2z

]r 2
1nS 1

r

]z

]r
1

1

r 2

]2z

]u2D 50 ~11!

and

]

]r S ]2z

]r 2
1

1

r 2

]z

]r
1

1

r 2

]2z

]u2D 1
12n

r 2

]2

]u2 S ]z

]r
2

z

r D50,

~12!

TABLE II. The parameters used in all models to predict modal frequencies.
The plate thickness~h! and density~r! were measured. Young’s modulus~E!
and Poisson’s ratio~n! are taken from Ref. 7.

Physical parameters of crotales

E 1011 N/m2

h 4.7 mm
r 8861 kg/m2

n 0.33

TABLE III. Predicted frequencies of the acoustically important modes for three crotales using thin plate theory.
The error when compared to the actual values is also indicated.

Diameter~60.1 mm!
~Note! Mode l

Predicted frequency
~60.25 Hz!

Actual frequency
~60.25 Hz! % error

Ratio with
~2,0! freq.

132.8 ~2,0! 2.29 914.0 1055.5 13.40 1
(C6) ~3,0! 3.50 2135.1 2117.5 20.83 2.33

~4,0! 4.65 3768.7 3849.5 22.75 4.11
101.6 ~2,0! 2.29 1561.6 2113.5 26.11 1
(C7) ~3,0! 3.50 3647.8 4043.5 9.79 2.33

~4,0! 4.65 6438.8 6328.5 1.74 4.11
76.5 ~2,0! 2.29 2754.4 4241.0 35.05 1
(C8) ~3,0! 3.50 6434.2 7380.0 12.82 2.33

~4,0! 4.65 11357.1 11992.0 5.29 4.11
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for the free outer edge, and

z50 ~13!

and

]z

]r
50, ~14!

for the clamped inner edge. When these conditions are ap-
plied to Eq. ~1!, the eigenvalues can be used to find the
frequencies of the normal modes of the plates. The only
physical parameters required to determine the eigenvalues
are the ratio of the inner to outer radii and Poisson’s ratio,
assumed here to be 0.33~Vogel and Skinner conclude that
the eigenvalues are not sensitive to the value of Poisson’s
ratio!.

Using this theory, we have predicted the frequencies of
the ~2,0!, ~3,0!, and ~4,0! modes for a set of free-clamped
annular plates. The inner radii were chosen to be equal to the
radii of center masses of the crotales and the outer radii were
chosen to be equal to that of the indicated crotales. The val-
ues forl8 and predicted frequencies are shown in Table IV.
Comparing these predictions to the actual frequencies of the
crotales shows better agreement than was found for the
model of a flat plate, indicating the superiority of the annular
plate model. This is not surprising given the physical simi-
larity between crotales and free-clamped annular plates;
however, the poor agreement between the predicted ratios of
the frequencies of the modes and the actual ratios of the
frequencies demonstrates clearly that annular plate theory is
also insufficient as a model for crotales.

Since these simple theories proved to be insufficient for
predicting the behavior of crotales, we turned to finite ele-
ment analysis to understand the effect of the center mass on
the tuning.

C. Modeling the crotales using finite element analysis

A finite element model was developed using Solidworks,
a commercially available software program. The model con-
tained up to 127 620 nodes, with the actual number of nodes
depending upon the size of the center mass relative to the
plate. The software calculated the resonant frequencies of the
normal modes as well as providing a visual confirmation of
the mode shapes. This allowed us to compare predicted and
observed mode shapes as well as the resonant frequencies.

The accuracy of the program was verified by modeling a
thin flat circular plate. The predicted values matched those
derived from Eq.~1! to within 0.5%. We then created a cro-
tale model using the physical parameters of theC6 crotale
and compared the predicted resonant frequencies to those
measured in the laboratory. The predicted frequency of the
~2,0! mode using this model agrees to within 6% of the cor-
responding experimental value, and we believe that this error
results from not knowing the exact values for Young’s
Modulus, and to a lesser extent Poisson’s ratio. However, the
ratios of the frequencies of the modes agree to within 0.7%.

The first physical parameter investigated within the
model was the height of the center mass. A series of models
of theC6 andC8 crotales were created with the height of the
center mass ranging from a flat plate to twice the height of
the actual center mass. The ratios of the acoustically impor-
tant modes were then determined, and are plotted in Figs. 6
and 7. It is evident that increasing the height of the center
mass has little effect on the ratios of the frequencies of the
acoustically important modes of theC6 crotale once it has
reached 100% of the mass height as manufactured. However,
the data in Fig. 7 indicate that any central mass detunes the
smallerC8 crotale, but with little extra effect after 100%.

The fact that increasing the height of the center mass
beyond a certain point produces little or no change in the

TABLE IV. Predicted frequencies of the acoustically important modes for three crotales using annular plate
theory. The error when compared to the actual values is also indicated.

Diameter~60.1 mm!
~Note! Mode l8

Predicted frequency
~60.25 Hz!

Actual frequency
~60.25 Hz! % error

Ratio with
~2,0! freq.

132.8 ~2,0! 4.04 1150.7 1055.5 29.02 1
(C6) ~3,0! 7.64 2178.4 2117.5 22.87 1.89

~4,0! 13.19 3758.9 3849.5 22.49 3.27
101.6 ~2,0! 4.68 2278.6 2113.5 27.81 1
(C7) ~3,0! 7.92 3858.0 4043.5 4.59 1.69

~4,0! 13.28 6466.2 6328.5 22.18 2.84
76.5 ~2,0! 6.03 5175.9 4241.0 222.04 1
(C8) ~3,0! 8.78 7543.6 7380.0 22.22 1.46

~4,0! 13.71 11773.9 11992.0 1.82 2.27

FIG. 6. Frequency ratios of the acoustically important modes of theC6

crotale as a function of height of center mass according to the FEA model.
Open diamonds represent the ratios of the frequencies of the~3,0! to ~2,0!
modes. Closed diamonds represent the ratios of the frequencies of the~4,0!
to ~2,0! modes. The ideal ratios of 2:1 and 7:2 are indicated by horizontal
lines. After approximately 100%, the frequency ratios of the modes changes
very little.
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frequencies of vibration indicates that the center mass does
indeed act as a clamping mechanism as was postulated
above. However, clearly the boundary conditions are not
equivalent to those of an annular plate clamped at the center.

The second investigation within the context of the finite
element model entailed changing the radius of the center
mass and determining the modal frequencies as described
above. In this set of models the radius ranged from approxi-
mately 30% to 200% of the original center mass radius for
the C6 andC8 crotales. The results of this investigation are
plotted in Figs. 8 and 9. The radius of the center mass of
crotales clearly has a significant effect on their tuning, as one
would expect; however, these simulations indicate that the
manufacturer could choose to make more ideally tuned cro-
tales by choosing the height and radius for each crotale in-
dividually rather than a single size as they are currently man-
factured. While theC6 crotale is well-tuned as manufactured,
both investigations of theC8 crotale indicate that a flat plate
of the same radius would be better tuned than the actual
crotale.

D. An alternate solution for tuning crotales

While the annular plate model was shown to be insuffi-
cient for describing crotales, certain aspects of the theory
deserve more careful consideration. The work of Vogel and
Skinner implies that the ratio of the frequencies of the~3,0!
to ~2,0! mode becomes fixed when the ratio of the inner to
outer radii is chosen. In most circumstances, the ratio of the
frequencies of these modes corresponds to a unique value for
the ratio of radii. This is true in the case of the~3,0! to ~2,0!
mode frequency ratio. Building on the work of Ref. 8, we
have defined the parameters for a series of free-clamped an-
nular plates that have similar acoustic properties to crotales.
They have the added advantages of being more ideally tuned
and containing less metal, presumably leading to lower pro-
duction costs.

To meet the criteria for ideal tuning the~2,0! modes of
the annular plates must occur at the frequencies correspond-
ing to the desired note, a ratio of 2:1 must exist between the
frequencies of the~3,0! and ~2,0! modes, and a ratio of 7:2
must exist between the frequencies of the~4,0! and ~2,0!
modes. Since the~2,0! and ~3,0! modes contain the most
power, their nondimensional frequency parameters were cho-
sen to optimize tuning. Using these criteria, the optimal re-
lationship between the inner and outer radii was determined
to be

b

a
50.185, ~15!

where b is the inner radius. We note that this is a unique
relationship and that it indicates a smaller ratio than exists
for any of the crotales investigated if the inner radius is taken
as the radius of the center mass. Once the ratio of radii is
chosen, the ratio of nondimensional frequency parameters
between any two modes is uniquely specified. The ratio of
0.185 corresponds to values ofl8 for the acoustically impor-
tant modes of

l2,08 53.79, ~16!

l3,08 57.57, ~17!

FIG. 7. Frequency ratios of the acoustically important modes of theC8

crotale as a function of the height of the center mass according to the FEA
model. Open diamonds represent the ratios of the frequencies of the~3,0! to
~2,0! modes. Closed diamonds represent the ratios of the frequencies of the
~4,0! to ~2,0! modes. The ideal ratios of 2:1 and 7:2 are indicated by hori-
zontal lines. Note that tuning worsens with the departure from a flat plate.

FIG. 8. Frequency ratios of the acoustically important modes of theC6

crotale as a function of radius of center mass according to the FEA model.
Open diamonds represent the ratios of the frequencies of the~3,0! to ~2,0!
modes. Closed diamonds represent the ratios of the frequencies of the~4,0!
to ~2,0! modes. The ideal ratios of 2:1 and 7:2 are indicated by horizontal
lines.

FIG. 9. Frequency ratios of the acoustically important modes of theC8

crotale as a function of radius of center mass according to the FEA model.
Open diamonds represent the ratios of the frequencies of the~3,0! to ~2,0!
modes. Closed diamonds represent the ratios of the frequencies of the~4,0!
to ~2,0! modes. The ideal ratios of 2:1 and 7:2 are indicated as horizontal
lines. Again, tuning worsens with the departure from a flat plate.
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and

l4,08 513.18. ~18!

This ratio and set of nondimensional frequency param-
eters ensures that the ratio of the frequencies of the~3,0! to
~2,0! modes is 2.00, and that the ratio of the~4,0! to ~2,0!
modes is 3.48. This is fortunate, since the latter results in an
almost perfect minor seventh relationship and cannot be
changed without affecting the ratio of the frequencies of the
~3,0! to ~2,0! modes. Note that since the nondimensional fre-
quency parameter is related linearly to the frequency of its
corresponding mode, the ratios of the frequencies of the
modes are equal to the ratios of the nondimensional fre-
quency parameters.

To finish the design all that remains is to choose the
value of the outer radii of the plates such that the~2,0! modes
occur at the correct frequencies. This can be accomplished
by rearranging Eq.~9! to yield

a5S l8h

4p f
AE

r D 1/2

, ~19!

wheref is the desired frequency of the~2,0! mode.
Using Eqs.~15! and ~19!, the radii of a set of free-

clamped annular plates with tuning similar to that of an ideal
crotale can be found. Values for the inner and outer radii of
such a set of plates were determined in this manner, and
finite element models were used to confirm the validity of
these parameters. For both octaves, the ratios of the frequen-
cies of the acoustically important modes agrees extremely
well with the ideal. The ratio of the frequencies of the~3,0!
to ~2,0! modes agrees to within 1%, and the ratio of the
frequencies of the~4,0! to ~2,0! modes agrees to within 4%
for the entire set. As one ascends the scale into the upper
octave, however, the frequencies of the~2,0! modes are no
longer accurately predicted by Eq.~19!. This is apparently
due to the thickness of the plates becoming large relative to
the diameter. One may counter this effect by making the
plates correspondingly thinner or decreasing the outer radius
while keeping the same inner to outer radius ratio of 0.185.

IV. CONCLUSION

We have investigated the dynamics of orchestral crotales
both theoretically and experimentally and have determined
the important physical parameters in creating the sound of
the instruments. We have shown that orchestral crotales typi-

cally have three acoustically important modes, which have
been identified as the~2,0!, ~3,0!, and~4,0! modes. However,
in some cases only the~2,0! and ~3,0! modes were found to
be acoustically important. The frequencies of these modes
were reported for each crotale in a two-octave set. The cro-
tales become increasingly detuned as the Western musical
scale is ascended, which may be explained by the invariance
of the magnitude and radius of the central mass.

Empirical values of the frequencies of the normal modes
of the crotales were compared to predicted values derived
from a model of a thin plate clamped at the center and a
model of an annular plate clamped at the center. Since both
of these models were shown to be inadequate for describing
the behavior of crotales, a finite element model of the cro-
tales was used to investigate the importance of the central
mass. It was found that decreasing the height of the center
mass increases the ratios of the modal frequencies while in-
creasing the height has little effect. Additionally, increasing
or decreasing the radius of the center mass has a large effect
on the tuning of a crotale. It has been shown that the physical
parameters of the center mass have been chosen well for the
lowest crotales, but that the highest crotale would be better
tuned if the center mass were absent entirely.

Finally, a design for a more ideally tuned instrument was
presented. This instrument consists of clamped annular plates
with a ratio of inner to outer radii of 0.185.
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